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Abstract

At the beginning of the new millennium, the proportional, integral and deriva-
tive PID controller remains by far the most dominant form of feedback con-
troller in use today. The control law of PID is very simple but extremely ef-
fective and the performance to cost ratio of the technique, when it works, is
well appreciated. Plenty of tuning techniques and years of research have re-
sulted in improved understanding and enhanced controller performance, though
the basic structure remains the same. Many research contributions purport
that advanced controller algorithms e.g. predictive controllers, outperform the
conventional PI(D) controller. Invariably, such claims are supported, in simu-
lation, by poorly tuned PI(D) controllers; consequently it is not surprising that
the advanced structures yield enhanced performance. This research proposes to
compare a well–tuned PID controller with a more advanced structure, namely
the generalised predictive controller of Clarke et al. (1987).
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Nomenclature

∆ Differencing operator 1 − z−1

λ Control weighting sequence

ωB Bandwidth in frequency domain

ωc Frequency where the Nyquist plot intersects the unit circle

ωn Natural frequency

ωs Sampling frequency

ξ Damping factor

A Plant denominator polynomial in backward shift operator z−1

B Plant numerator polynomial in backward shift operator z−1

d Time delay of a system (samples)

DM Delay margin

e(t) Control error

Gc(s) Controller transfer function

Gp(s) Process transfer function

Ggap Generation gap in the genetic algorithms

GM Gain margin

h Sampling period

i Imaginary unit

Kd Derivative gain in PID controller

Ki Integrating gain in PID controller

Kp Proportional gain in PID controller

L(s) Transfer function of an open–loop

Lind Length of the chromosome structure

Mp Resonance peak of the complementary sensitivity transfer function T (s)
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Ms Resonance peak of the sensitivity transfer function S(s)

MM Modulus margin

N1 Minimum cost horizon for GPC control law

N2 Maximum cost horizon for GPC control law

Nu Control horizon

na Order of the process pole polynomial

nb Order of the process zero polynomial

Pm Mutation probability

PM Phase margin

S(s) Sensitivity transfer function

T (s) Complementary sensitivity transfer function

Td Time delay of a system (sec)

Ti Integration time

Tr Rise time defined as the time it takes the signal to go from 10% to 90%
of the final value

Ts Settling time at step response

Trd Settling time at disturbance rejection

u(t) Control signal

ud(t) Disturbed control signal

y(t) Process output

yd Overshoot at disturbance

yp Overshoot at step response

ymax Peak amplitude at step response

yss Steady state value

CARIMA Controlled Autoregressive and Integrated Moving Average

erfc Complementary error function

GA Genetic Algorithm

GPC Generalised Predictive Control

IAE Integrated Absolute Error

ISE Integrated Squared Error

LQG Linear Quadratic Gaussian
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LRPC Long Range Predictive Control

MBPC Model Based Predictive Control

OSAC One Step Ahead Control

SISO Single Input Single Output

SUS Stochastic Universal Sampling



Chapter 1

Introduction

The PI(D) controller is by far the most dominating form of feedback in use
today. More than 90% of control loops are of the PID type, the majority of
which are PI control [6]. Many tuning technique appeared during last decades
and scientists still working on improving this type of control. Many researches
for a single loop control use the PID controllers with Ziegler–Nichols tuning
method [29] as a benchmark, see [16, 15]. The modern optimization techniques
based on the frequency analysis outperform the the Ziegler–Nichols method [3].
An alternative to the PID controller is the Model Based Predictive Controller
(MBPC). The idea of MBPC traced to the work of Kalman at al. [11, 12] in
early 1960s when Linear Quadratic Gaussian (LQG) concept was introduced.
The formulation of the Generalised Predictive Controller (GPC) was proposed
by Clarke at al. [8, 9].

Many benchmarks were made in terms of equivalence different tuning tech-
niques with the same controller [21, 16, 27], also comparison the PID controller
and the GPC controller had been done [22]. The research examined both con-
trollers in laboratory scale for a single tank system.

Developing computers make possible to use powerful optimization tech-
niques, such as Genetic Algorithms (GA). This technique was successfully ap-
plied to tune the PID Controllers [10], MBPC [23] and the GPC controller as
well [18].

In 2001 at the IFAC Workshop on Digital Control Karl Ȧström presented
models which are suitable for benchmarks controllers [5]. These models are
applied to the benchmark presented at the workshop. The goal of research
proposed in this report is a comparison the well known PI controller with the
GPC controller at a peer–to–peer level using GA as a tuning method.

This report is organized as follows:

• Chapter 1 Introduction.

• Chapter 2 introduces definition of sampling period and different meth-
ods to obtain the correct value, including analysis in time and frequency
domain. Next 14 models presented by Karl Ȧström [3, 5] are described
and the proper sampling period for the GPC controller is chosen. The
last section of this chapter describes an easy to control first order system,
which is not included in Ȧström’s benchmark test. For all models except
the model presented in section 2.10 the PI and GPC controller are tuned.
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CHAPTER 1. INTRODUCTION 5

• Chapter 3 presents the typical textbook PI controller and the more ad-
vanced structure proposed by Karl Ȧström [3]. Both are described and
the GPC controller is introduced as an alternative to the previous con-
trollers. The control law of the controllers and the tunable parameters are
described.

• Chapter 4 describes the tuning of both of these controllers. The per-
formance criteria for servo and regulatory response are introduced. The
optimization technique, genetic algorithms, is reported as a tool for tuning
both controllers. The basic idea and parts of the code are included. In
the last section a short analysis of searching areas, in terms of the GPC
controller, for three models is presented.

• Chapter 5 presents the results of tuning both controllers in terms of the
performance criteria. The genetic algorithm described in section 4.4 is
used as an optimization tool. For the GPC controller three cases of tuning
were applied.



Chapter 2

The Ȧström test – models

The systems which are discussed in this chapter where proposed by Karl Ȧström
[3, 5]. In this internal report models from both publications will be considered
– the workshop and the paper as well. The first six models are representative of
standard process control systems. All models describe linear processes and are
specified by a transfer function G(s) which is analytical with finite poles and
possibly an essential singularity at infinity. This description covers finite dimen-
sional systems with time delay (sections 2.4 and 2.9) and infinite dimensional
systems described by linear partial differential equations (section 2.10).

2.1 Choice of the sampling period

In terms of the design of a digital controller it is necessary to choose a sampling
period. If the sampling period is too long it is more difficult to control the
process, especially for the disturbance rejection; it increases the deviation after
the load disturbance. Relatively low sampling rates can be used in control
problems, because the dynamics of many controlled systems have a low pass
character and their time constants are typically larger then the closed–loop
response times. However, very short sampling periods increases the load on the
computer. The guidelines for the choice of sampling period are presented in
following sections.

2.1.1 Settling time

The sampling period, denoted as h, should be less then 1/10th of either the open
or closed–loop settling time Ts depending on which is shorter. For the oscilla-
tory system presented in section 2.5 this technique is inappropriate, because in
general the sampling period will be too long. This is the simplest method and
well documented in the literature.

2.1.2 Rise time

The sampling period, h, can be obtained from equation 2.1.

h =
Tr

Nr

(2.1)

6
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Figure 2.1: Presentation of bandwidth

where Tr is the rise time and Nr is number of sampling periods per rise time.
For the first order systems it is reasonable to choose Nr between 4− 10, see [2,
sec. 3.7].

2.1.3 Analysis in the frequency domain – the damped fre-

quency method

The sampling period, h, can be related to the damped frequency of the closed–
loop system. Given the natural frequency, ωn, and the damping factor, ξ, the
sampling period is achieved from equation 2.2.

h =
2 ∗ π

N ∗ ωn ∗
√

1 − ξ2
(2.2)

The parameter N is the ratio of damped period to sampling period. It is rea-
sonable to choose N = 25 − 75 [2, sec. 9.2].

2.1.4 Analysis in the frequency domain – the bandwidth

method

Another technique based on the frequency domain analysis uses the bandwidth
of closed–loop system [2, sec. 2.6]. Illustration of the bandwidth ωB is shown
in figure 2.1 and is defined as the first frequency where the gain drops below
70.79 percent (−3dB) of its DC value. Reasonable sampling frequencies are
ten to thirty times the bandwidth of the closed–loop system, as it is defined by
equation 2.3.

10 ∗ ωB ≤ ωs ≤ 30 ∗ ωB (2.3)

where ωs is the sampling frequency. The sampling period, h, yields

h =
2 ∗ π

ωs

(2.4)
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2.1.5 Analysis in the frequency domain – the natural fre-

quency method

An other technique presented in [2, sec. 9.2] states that the sampling period
should be chosen as shown in equation 2.5.

ωn ∗ h = 0.2 − 0.6 (2.5)

where ωn is the desired natural frequency of the closed–loop system. The choice
depends on the nature of the disturbance acting on the system.

2.2 System with multiple equal poles

The first of the transfer functions presented by Karl Ȧström is given by 2.6.

G1(s) =
1

(s + 1)n
, n = 1, 2, 3, 4, 8 (2.6)

They are common in the process industry. For large values of n the system
behaves like a system with long time delay. In the paper [2] K. Ȧström proposed
to use n = 3, hence the function described by equation 2.7 will be considered.

G1(s) =
1

(s + 1)3
(2.7)

The system is stable in closed–loop when a unit feedback is applied. For
the system described by equation 2.7 the rise time is Tr = 4.22(sec), hence the
sampling period h = 0.42 − 1.05(sec), based on the rise time analysis given
in section 2.1.2. Using the method presented in section 2.1.1 the settling time
for the open–loop system is Ts = 7.52(sec), so the sampling period should
not be longer than 0.752(sec). The frequency analysis method mentioned in
section 2.1.3 yields h = 0.15 − 0.45(sec) for closed–loop system presented by
equation 2.7, (ωn = 0.638 rad/sec, ξ = 0.5). The sampling period h = 0.1(sec)
was chosen for the model G1(s).

2.3 Fourth order system

This model is similar to the previous one, but the settling time and the rise time
are shorter.

G2(s) =
1

(s + 1)(1 + αs)(1 + α2s)(1 + α3s)
α = 0.1, 0.2, 0.5, 1.0 (2.8)

The case where α = 0.2, is presented in equation 2.9.

G2(s) =
1

(s + 1)(1 + 0.2s)(1 + 0.04s)(1 + 0.008s)
(2.9)

This system has four poles whose separation is determined by the parameter
α. For the case where α = 1 the system G2 is identical to the system G1, for
n = 4. These two systems, G1, G2, represent processes which are relatively
easy to control. System G2 should be sampled at 0.57 − 2.28(sec) according
to equation 2.1, or 0.15(sec) if the settling time method is used. A sampling
period of 0.1(sec) was chosen.
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2.4 Third order system with long dead time

This system is similar to the model G1, however in this case a time delay,
Td = 15(sec), is included. Since the model dynamics of the systems G1 and G3

are the same, the same sampling period, h = 0.7(sec), was chosen. The model
is presented in equation 2.10.

G3(s) =
1

s3 + 3s2 + s + 1
∗ e−15s (2.10)

2.5 Integrating system

For the model G4 it is inappropriate to select the sampling rate based on the
settling time criteria presented in section 2.1.1. This is due to the oscillatory
behavior of the feedback system with a unit gain. In this case it is better to
choose h based on the bandwidth of the closed–loop system. The bandwidth
is 1.1(rad/s) = 0.175(Hz), so the sampling frequency is ωs = 1.7 − 5.2(Hz),
yields h = 0.19 − 0.58(sec). The method based on the rise time yields h =
0.17− 0.43(sec), for the rise time Tr = 1.74(sec) of the closed–loop system with
a unit gain. A sampling period of 0.2(sec) was chosen for this model.

G4(s) =
1

s(s + 1)2
(2.11)

2.6 Inverse unstable system

The class of non–minimum phase systems is comprised of time delayed systems,
unstable systems (poles in the right half of the complex plane) and inverse
unstable systems (zeros in the right half of the complex plane).

G5(s) =
1 − αs

(s + 1)3
α = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 (2.12)

The systems of equation 2.12 represent an inverse unstable system. These sys-
tems have three equal poles and a zero in the right half plane. The achievable
performance is determined by the parameter α. The difficulty of control in-
creases with increasing α. [5]. When α is increasing the zero moves to the origin
of the pole–zero map. For α = 0.1 the closed–loop system G5(s) has gain mar-
gin 15.8dB, when α = 2 the gain margin is equal to 1.16dB and when α = 5
the system is unstable, the gain margin is −6dB. With increasing α the peak
response of the transfer function, G5(jω), is increasing as well. In this study
the choice α = 2 was made, which is presented in equation 2.13.

G5(s) =
1 − 2s

(s + 1)3
(2.13)

For this system the sampling period was chosen as 0.15(sec) based on the fre-
quency response analysis.
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2.7 An underdamped system

This system is included in [3], however was not presented at the workshop [5].

G6(s) =
9

(s + 1)(s2 + αs + 9)
α = 0.2, 0.5, 1.0, 2.0 (2.14)

The system has two complex poles with the relative damping ξ = α/6. When
the parameter α is decreased the system becomes more difficult to control.

G6(s) =
9

(s + 1)(s2 + 2s + 9)
(2.15)

For the choice α = 2, the closed–loop rise time Tr = 0.62(sec) while the open–
loop rise time Tr = 2.18(sec). A Frequency response analysis yields the sampling
time as h = 0.06 − 0.19(sec), while analysis based on the rise time yields h =
0.06 − 0.15(sec). A sampling period h = 0.1(sec) was chosen in this case.

2.8 Pure time delay

G7(s) = e−αs when α = 1, hence (2.16)

G7(s) = e−s (2.17)

This system and the system presented in section 2.9 were proposed in [3]. These
systems are relatively easy to control in closed–loop. For this system, G7(s),
the sampling period was chosen as 0.1(sec).

2.9 Pure integrator with time delay

A pure integrator with time delay is another example of a common model. The
sampling time was chosen as 0.1(sec). The system is integrating in open–loop
and stable in a unity feedback configuration.

G8(s) =
e−s

s
(2.18)

2.10 A distributed parameter system

Transfer functions of the form, equation 2.19, frequently occur when modelling
heat conduction problems.

G9(s) = e−
√

s (2.19)

The square root and power functions are not allowed in MATLAB for variables
defined as a transfer function. In terms of the system analysis it is necessary
to convert this equation to an alternative form. From table [13, sec. 6.10] the
transformation is as follows:

F (s) = e−k
√

s(k > 0) ⇒ f(t) =
k

2
√

π ∗ t3
∗ e

−k
2

4t (2.20)
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Figure 2.2: Representation of the analysed function in time domain

hence G9(t) =
1

2
√

π ∗ t3
∗ e

−1
4t (2.21)

Another way to obtain this function is via the command ilaplace from The

Symbolic Math Toolbox version 2.1.3.
ilaplace(exp(-sqrt(s))) ⇒ 1/2/pi^(1/2)/t^(3/2)*exp(-1/4/t)

which yields exactly the same result as equation 2.21. Using this toolbox, the
step response of the function G9(s) may be obtained as
ilaplace(1/s*exp(-sqrt(s))erfc(1/2/t^(1/2)) ⇒ erfc(1/2/t^(1/2))

where erfc denotes the complementary error function.

erfc(x) =
2√
π

∞
∫

x

e−t2 dt (2.22)

Figure 2.2(b) illustrates the step response using the following command:
plot(erfc(1/2./[0:500].^(1/2)))

A parametric ARX model was estimated yielding the transfer function 2.23

G9(s) =
0.57s4 + 13.59s3 + 5.59s2 + 0.29s + 0.001

s5 + 9.57s4 + 24.23s3 + 7.61s2 + 0.32s + 0.001
(2.23)

A 98% fit between the model defined in equation 2.19 and the equation 2.23 was
obtained. The step response of the function given by equation 2.23 is illustrated
in figure 2.3. This system has not, as of yet, being included in the PI versus
GPC comparison.

2.11 Fast and slow modes

The process is described by the following function:

G10(s) =
100

(s + 10)2

(

1

s + 1
+

0.5

s + 0.05

)

(2.24)

This system has two fast modes with time constants 0.1(sec), one mode with a
time constants of 1(sec) and a slow mode with a time constant of 20(sec). The



CHAPTER 2. THE ȦSTRÖM TEST – MODELS 12

Time (sec)

A
m

p
li
tu

d
e

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Figure 2.3: Step response of the estimated model G9(s)

system has a static gain of 10 and the step response is dominated by the slow
time constants, but it is the faster modes that are critical for the closed–loop
system [3]. Thus in this case, the sampling period should be obtained from the
closed–loop system. The time constant is 10(sec), hence a sampling period of
one second was chosen.

2.12 Fast mode

This is a similar model to the previous one, however the slowest term was
removed.

G11(s) =
150

(s + 10)2(s + 1)
(2.25)

The sampling time, 0.1(sec), was chosen as one tenth the settling time of the
closed–loop system.

2.13 A conditionally stable system

G12(s) =
(s + 6)2

s(s + 1)2(s + 36)
(2.26)

For this system the frequency response analysis and the rise time method were
used to determine a suitable sampling period. The rise time of the closed–loop
system is 1.82(sec), so dividing this by a factor of 4 − 10 gives a sampling
time 0.2− 0.4(sec). From the frequency analysis the sampling period should be
0.17 − 5.28(sec). Finally, the value 0.2(sec) was chosen.

2.14 An unstable system

G13(s) =
1

s2 − 1
(2.27)
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Determining a suitable sampling time based on time domain methods fail in
this case. The system is unstable in open–loop and unity gain closed–loop as
well. It is necessary to resort to the frequency domain analysis and based on
this analysis a sampling period of 0.1(sec) was chosen.

2.15 First order system

G14(s) =
1

10s + 1
(2.28)

A first order transfer function would be representative of liquid level control
problems. Closed–loop control of such systems is easy. A sampling time of one
second was chosen.



Chapter 3

Controllers

3.1 PI controller

The PI(D) controller is the most popular type of feedback control. Currently
more than 90% of control loops are of the PID type [6], the majority of which are
PI control. The terms P, I, D, may be interpreted as: P—proportional action
which effect the present, I—integral action (past), and D—derivative action
(future control error). In the case of pure proportional control, the control
action is simply proportional to the control error. The main function of integral
action is to make sure that the process output agrees with the set point in
steady state. With only proportional control there is normally a control error
in steady state. With integral action, a small positive error will always lead to
an increasing control signal, and a negative error will give a decreasing control
signal no matter how small the error is [4].

For typical control problems such as flow, level etc. this type of controller
is sufficient. The typical textbook PI controller has the structure presented in
equation 3.1.

u(t) = k
(

e(t) +
1

Ti

t
∫

0

e(t) dt
)

(3.1)

where u(t) is the control variable, k and Ti are controller parameters and the
control error, e(t), is defined as

e(t) = r(t) − y(t) (3.2)

where r(t) is the set point and y(t) is the output of a system. To enhance
performance and extend the capabilities of the PI controller many alternative
formulations have been proposed, e.g. equation 3.3 by Karl Ȧstrȯm [3].

u(t) = k
(

b ∗ r(t) − y(t)
)

+ ki

t
∫

0

(

r(t) − y(t)
)

dt (3.3)

where k, ki, b are controller parameters. The parameter, ki, is preferred as a
tuning knob instead of the integration time, defined as Ti = k/ki as it looks
to reduced computation, however in industry the integration time Ti is more

14
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y(t)e(t) u(t)r(t)
ProcessProcessController

Figure 3.1: Feedback loop

popular. Figure 3.1 illustrates a block diagram representation of the typical
feedback loop. The loop consists of a controller, Gc(s), and the model, Gp(s),
of a process. The aim of the regulator is to minimize the error which is the
difference between the set point r(t) and actual output y(t). In other words, the
controller calculates the signal u(t) such that e(t) is zero, despite the occurrence
of disturbances and/or changes to the set point command.

3.2 Generalised predictive controller

Model Based Predictive Control, MBPC, is a field which has attracted much
research interest and attention since the late 1970’s. While different control
schemes with predictive capability are now available, one of the more com-
mon classes of predictive control is probably the Generalised Predictive Con-
trol, GPC, [8, 9]. It has found wide spread applications in areas where it is
economically feasible to develop an accurate process model e.g. in the petro-
chemical industry. These applications are typically described by multivariable,
non-linear, constrained process models for which the MBPC philosophy is ide-
ally suited [22], however the GPC is better suited for SISO systems.

3.2.1 Control law

There are three major components in the design of a GPC:

• A model of the system to be controlled. This model is used to predict the
system output over the prediction horizon. The GPC uses a CARIMA
(Controlled AutoRegressive and Integrated Moving Average) model of the
form:

A(z−1) ∗ y(t) = B(z−1) ∗ u(t) + C(z−1) ∗ ξ(t)

∆
(3.4)

where

B Numerator of a plant given by a polynomial in the backward shift
operator z−1

A Denominator of a plant given by a polynomial in the backward shift
operator z−1

ξ(t) uncorrelated random sequence

∆ differencing operator defined as 1 − z−1. To derive a j–step ahead
predictor the Diophantine equation 3.5 is solved.

1 = Ej(z
−1)A∆ + z−jFj(z

−1) (3.5)

where Ej and Fj are the corresponding controller polynomials with
degrees j − 1 and na, respectively.
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Figure 3.2: Predictive control law

• The various predictive control algorithms have utilized different cost func-
tions. The general aim is that the future output should follow a pre–
determined reference signal, taking into account the control effort required
to do so. The GPC cost function is given by equation 3.6.

J = E

{

N2
∑

j=N1

[y(t + 1) − w(t + 1)]2 +

Nu
∑

j=1

λ(i)[∆u(t + j − 1)]2

}

(3.6)

where

N1 is the minimum cost horizon, subject to N1 ≤ N2

N2 is the maximum cost horizon

Nu is the control horizon, subject to Nu ≤ N2

λ is the control weighting sequence, subject to λ ≥ 0

w future reference trajectory

• Minimization of criterion function to yield the optimal control output.

This methodology is common to all controllers that belong to the MPC fam-
ily and is characterized by the strategy represented in figure 3.2.The principle
control strategy used is the long range predictive control, LRPC. In this strategy
the objective function is expressed in terms of the future values of the output
over a certain horizon and of a sequence of future control values. The Gener-
alised Predictive Control, GPC, belongs to this class [14, sec. 7.7] in the sense
that the control objective concerns the outputs and the inputs of the plant over
a certain horizon in the future beyond d+1, where d is the integer delay. These
strategies are related to the minimization of a quadratic criterion involving fu-
ture inputs and outputs in a receding horizon sense. The sequence of control
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signals in the future is computed, but only the first one is applied and the op-
timization procedure is restarted at the next step. The generalised predictive
control was introduced by Clarke at al. [8, 9].

The control signal, u(t|t), is sent to the process whilst the next control
signals calculated are rejected, because at the next sampling instant, y(t + 1),
is already known and procedure is repeated with this new value and all the
sequences are brought up to date. Thus u(t + 1|t + 1) is calculated (which in
principle will be different to u(t+1|t) because of the new information available)
using the most recent information. This principle implies that, at each instant t,
the prediction horizon N2 is pushed into the future giving rise to the ”receding
horizon” concept [19].

3.2.2 GPC tuning knobs

For the classical PI controller structure there are only two tunings parameters,
Kp and Ki. Tuning of the GPC controller is more complex, as there are more
tuning parameters available. Some of them, like the prediction horizons, only
influence the set point response, which other parameters, like the T polynomial,
influences disturbance rejection and robustness.

The minimum cost horizon, N1. In most cases it is recommended to set
this parameter to 1, however for systems with dead time, when the delay d is
exactly know there is no point setting N1 to be less than d since there would
be unnecessary calculations in that corresponding output cannot be affected by
the first action u(t). If d is unknown or is variable, than N1 can be set to 1 with
no loss of stability and the degree of B(z−1) increased to encompass all possible
values of d [8].

The maximum cost horizon, N2. If the plant has an initially negative–
going nonminimum phase response, N2 should be chosen so that the later
positive–going output samples are included in the cost: in discrete–time this
implies that N2 exceeds the degree of B(z−1). In practice, however, a rather
larger value of N2 is suggested, corresponding more closely to the rise time of
the plant [8].

The control horizon, Nu. This is an important parameter. For a simple
plant (e.g. open–loop stable though with possible dead time and nonminimum
phase behavior) a value Nu = 1 gives generally acceptable control. In general
increasing Nu results in the corresponding output response become more active
until a stage is reach where any further increase in Nu makes little difference.
An increased value of Nu is more suitable for complex systems where it is found
that good control is achieved when Nu is at least equal to the number of unstable
or badly damped poles.

The control weighting coefficient, λ. The control weighting coefficient
can be used to penalize the control signal. The choice λ = 0, may result in
excessively large control signal moves, which are undesirable.
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T polynomial is principally used to negotiate the trade–of between distur-
bance rejection and robustness. It does not effect the servo performance of the
GPC. The observer should not be selected on the basis of good robustness prop-
erties alone, because of its influence on the speed of disturbance rejection; slow
observer poles are to be preferred for robustness, but fast poles for good distur-
bance rejection. Thus a trade–of between the two must exist when designing an
appropriate T polynomial [26].



Chapter 4

Controller tuning

4.1 Performance analysis

In this section definitions of performance criteria at servo and regulatory re-
sponse are presented. The servo response refers to the closed–loop response,
y(t), to an applied set point input r(t), see figure 4.2. The following criteria are
considered:

Rise time, Tr, is either defined as the inverse of the largest slope of the step
response or the time it takes the response to pass from 10% to 90% of its steady
state value yss.

Settling time, Ts, is the time it takes for the step response to reach and
remain within 2% of its steady state value.

Overshoot, yp, is the ratio of the difference between the first peak and the
steady state value, yss, of the step response.

yp =
ymax − yss

yss

(4.1)

In industrial control applications it is common to specify an overshoot less than
10%. In many situations it is desirable, however, to have an overdamped re-
sponse with no overshoot [4].

Integrated Error, IE, is defined by equation 4.2

IE =

∞
∫

0

e(t) dt (4.2)

where e(t) is defined by equation 3.2. The IE criterion is a natural choice for
control of quality variables for a process where the product is sent to a mixing
tank. The criterion may be strongly misleading, however, in other situations.
It will be zero for an oscillatory system with no damping.

19
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Figure 4.1: Typical response y(t) to the step input r(t)
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Figure 4.2: The block diagram of regulatory response

Integrated Absolute Error, IAE, this is another very common perfor-
mance criterion, defined by equation 4.3.

IAE =

∞
∫

0

|e(t)| dt (4.3)

Regulatory response. Performance criteria for the regulatory response will
now be presented, where the regulatory response is defined as the closed–loop
response y(t) to a disturbance input, d(t), as illustrated in figure 4.2 where d(t)
is the step disturbance applied at the beginning of simulation, u(t) is the control
signal and ud(t) is the disturbed control signal and y(t) is the output. In this
case the following criteria are considered:

Overshoot at disturbance, yd, is defined as yd = − e2

e1
, where the peaks e1

and e2 are presented in figure 4.3. This definition is taken from [1].

Disturbance settling time, Trd, is the time it takes for the disturbance
response to reach and remain within 2% of its steady state value (zero) [1].
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Figure 4.3: Typical response of control error to step or impulse disturbance

4.2 Robust analysis

In practice models are not perfect, a discrepancy will always exist between the
identified model and actual plant. For the controller, which is designed using
the identified model, to be successful on the actual plant, the controller must
be robust to the process missmodeling. Standard measures of robustness are
presented in the following sections.

Gain Margin, GM , is defined as the factor by which the gain must change to
force the system to marginally stability [24, 4], the GM is defined by equation 4.4

GM =
1

| L(iωu) | (4.4)

where the ultimate frequency, ωu, is the frequency where L(iωu) = −π and L is
defined as an open–loop transfer function described by equation 4.5.

L(s) = Gc(s) ∗ Gp(s) (4.5)

The gain margin can increase or decrease to maintain stability. The case
when the gain has to decrease in dB to loose stability is called the upward
gain margin. Example where the gain must increase (absolute value of the
gain has to be more than zero and less than one) to lose stability, is called the
gain reduction margin or downward margin [15]. To illustrate this consider the
following non–minimum phase system:

L(z−1) =
0.3758z−1 + 0.5204z−2 − 0.6413z−3 + 0.1497z−4

1 − 0.2851z−1 − 1.055z−2 + 0.7687z−3 − 0.1475z−4
h = 0.7(sec)

The Nyquist plot of this function is presented in figure 4.4. For this exam-
ple the upward gain margin is equal to 6.6(dB) (2.138 of absolute value) and
downward margin −2.69(dB) (0.7337). Increasing the gain by a factor 2.138 or
decreasing by 0.7337 makes the system conditionally stable. Function margin

from the Control System Toolbox always returns the nearest gain to the criti-
cal point (−1, i0) on the Nyquist diagram. Therefore, it is possible that gain
margin expressed in dB is negative and the system is still stable.
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Figure 4.4: Nyquist diagram, illustration of upward and downward gain margin

Phase margin, PM , is defined as the angle through which the Nyquist dia-
gram must be rotated such that the diagram intersects the (−1, i0) point [24, 4].

PM = π + arg
(

L(iωc)
)

(4.6)

The gain cross–over frequency ωc is the frequency where the Nyquist plot in-
tersects the unit circle |L(iω)| = 1. Typical values of PM range from 300 to
600, however as presented on figure 4.4 the phase margin could be below zero as
well and the feedback system with unit gain remain stable. The gain and phase
margin definitions for discrete time systems and for continuous time systems
are exactly the same.

Delay margin, DM , represents the additional time delay that the closed–
loop system can tolerate prior to instability. In this report the delay margin
is presented in seconds. The delay margin can be obtained from a frequency
domain analysis, i.e. for any frequency, the phase lag introduced by a pure time
delay τ is:

∠φ(ω) = ωτ (4.7)

Therefore to convert the phase margin to a delay margin i.e. to compute the
additional delay which will lead to instability, equation 4.8 is used.

DM =

∣

∣

∣

∣

PM

ωc

∣

∣

∣

∣

(4.8)
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If the Nyquist plot intercepts the unit circle at several frequencies, ωi
c charac-

terized by corresponding phase margins of PMi, the delay margin is defined
by:

DM = min
i

∣

∣

∣

∣

PMi

ωi
c

∣

∣

∣

∣

(4.9)

The delay margin should be greater than one sampling period for discrete time
systems [14, sec. 8.3.1].

Modulus margin, MM , is defined as the radius of the circle centred on
the critical point (−1, i0) and tangent to the Nyquist plot of the open–loop
transfer function L(s). Recommended practical values for the modulus margin
are MM ≥ 0.5(−6dB) [min : 0.4(−8dB)], see [14]. The inverse of the MM
is Ms. This is the maximum value on the Bode plot of the sensitivity function
S(s).

Ms = max
0≤ω≤∞

(

S(iω)
)

(4.10)

where

S(s) =
1

1 + Gc(s) ∗ Gp(s)
(4.11)

Reasonable values of Ms are in the range from 1.3 (robust tuning) to 2.0 (more
aggressive tuning) [4].

Mp is defined as the resonance peak of the closed–loop system. The value
of Mp is the size of the resonance peak of the closed–loop system obtained
from frequency domain analysis of the complementary sensitivity function T (s)
detailed in equation 4.13.

Mp = max
0≤ω≤∞

(

T (iω)
)

(4.12)

where

T (s) =
Gc(s) ∗ Gp(s)

1 + Gc(s) ∗ Gp(s)
(4.13)

4.3 Tuning systems with time delay

The block diagram of figure 4.5(a) was used during the initial controller design
stage. In this figure the input d(t) represents a step disturbance, applied at
time t = 100(sec). A simulation of this closed–loop system revealed peaks in
the closed–loop system response which occurred every 16 seconds, figure 4.5(b),
These peaks occurred even if the disturbance, d(t) was set to zero, however if the
summation block was removed, the peaks disappeared. A remedy was sought
and found, the solution involved including a zero–order hold block between the
summation block and the disturbance input, figure 4.5(c). The resulting closed–
loop system response is illustrated in figure 4.5(d).



CHAPTER 4. CONTROLLER TUNING 24

y(t)

y(t)

u(t)

d(t)

r(t)

r(t)

GPC

Gp(s)

(a) Diagram without zero–order block

Time (sec)

A
m

p
li
tu

d
e

0 50 100 150 200
-0.5

0

0.5

1

1.5

2

2.5

(b) Peaks occur

y(t)

y(t)

r(t)

r(t)
u(t)

d(t)

GPC

Zero–Order Hold

Gp(s)

(c) Diagram with zero–order block

Time (sec)
A

m
p
li
tu

d
e

0 50 100 150 200
-0.5

0

0.5

1

1.5

2

(d) Peaks do not occur

Figure 4.5: Peaks in systems with long time delays

4.4 Genetic algorithms

Different problems can be divided into two groups, first solvable and second
unsolvable. In reality, what is solvable in theory, need not to be solvable in a
sensible time frame (the time of solve can be equal to infinity). Sometimes this
complexity of calculations is very useful, because it may be used for security
coding.

The Genetic Algorithms (GA) are stochastic global search methods based
on the mechanics of natural selection and natural genetics. They are iterative
methods, widely used in optimization problems in several branches of the sci-
ences and technologies. Contrary to other methods, in this methodology, at each
iteration (generation) a set of solutions defining a population or populations of
individuals, is considered. These individuals are ranked, according to the qual-
ity of the solution that each one leads to [17]. The Genetic Algorithm Toolbox

which was used, was designed by Andrew Chipperfield et al. from University of
Sheffield [7]. A flow chart of the GA is shown in flow chart 4.6.

1. Generate initial population. The GA starts with the generation of an
initial population, which describes the possible set of solutions by the
binary chromosomes. A fixed number of GA parameters have to be as-
signed at this stage of the code. For the results presented in this report
the following constants were assumed:

• Size of population If the population size is small and the problem
is complex (non–convex) the GA has less genetic material to work
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Figure 4.6: Flow chart of the genetic algorithm

with. Typically, a population is composed of between 30 and 100
individuals [7].

• Number of variables was changed depending on the designed con-
troller. For the PI controller only two variables were tuned. For the
more complex regulator, such as the GPC controller, eight tuning
variables were optimized.

• Number of individuals replaced by the new generation. To guarantee
convergence it is common to transfer a number of individuals to the
next generation unaltered. In the application considered here the five
best individuals are automatically passed to the next generation.

• Resolution of tuning variables. For T polynomial and the tuning
variables of the PI controller the resolution was set to 0.001, while
for λ it was set to 0.1.

• Coding. The binary representations of chromosomes was used, how-
ever the gray code is also available in the GA toolbox.

2.1 Ranking Rank individuals according to their objective fitness values. The
best individual is ranked as 2, and the worse as 0. Linear ranking gives
good results, however nonlinear ranking is also available.

2.2 Selection The individuals chosen for breeding are selected based on their
fitness or ranking. Fitter individuals are assigned a higher probability
and are more likely to be selected, however less fit individuals may also be
chosen. This ensures genetic variety. A common selection strategy known
as Stochastic Universal Sampling, SUS, was used. To make sure that the
best individuals go to the next generation a generation gap Ggap is set
and defined in equation 4.14.

Ggap =

(

Population Size− Number of the best individuals

Population Size

)

(4.14)

where the number of the best individuals e.g. 1 to 5 are passed from the
current generation to the next one unchanged.
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Figure 4.8: Example of mutation

2.3 Crossover The crossover operator recombines pairs of individuals with
given probability to produce the offspring. The crossover rate was set
to 0.7, as the default value according to the GA toolbox [7]. The sim-
plest recombination is to employ a single point crossover, as illustrated in
figure 4.7.

2.4 Mutation The mutation introduces a new genetic material by random
changes. THis operator enables a better exploration of the search space.It
works on each individual by alternating the value of a randomly selected
bit position, see figure 4.8. The mutation probability, Pm, was obtained
from equation 4.15.

Pm =
0.7

Lind

(4.15)

where Lind is the length of the chromosome structure. Typically the prob-
ability for bit mutation is in range 0.001 to 0.01, see [20].

3 Evaluation of the fitness function The fitness function indicates how good
a candidate solution is. This function, described in section 4.4.1, in clas-
sical optimization technique is called an objective function.

Check conditions The genetic algorithm stops when some criterion are reached.
This step is described in section 4.4.4.

4.4.1 Cost function

The success of the genetic algorithm as a tuning method is critically depended
on the objective function (cost function). There are an infinitive number of
criteria, however a few are common; one of them being the IAE described by
equation 4.3.

The IAE criterion is in many cases a natural choice, at least for control of
quality variables. A severe drawback is that its evaluation requires significant
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Figure 4.9: Presentation of the Integrated Absolute Error

computations or simulation time. The IAE can be applied to one of the following
three scenarios :

• IAE at servo response, see figure 4.9(a)

• IAE at regulatory response, figure 4.9(b)

• Combined, figure 4.9(c)

For these three cases a PI and GPC controller were tuned via the GA.

4.4.2 Cancellation of the output horizon

The genetic algorithm does not have information about the problem which it is
going to solve. The results are based on continuous evaluations of the objective
function. It is necessary to assume that the output predictive horizon has to be
more or equal to the initial predictive horizon N1 ≤ N2. The GA works on a
probabilistic method, hence there is possibility that N1 ≤ N2, what is forbidden
by the GPC control law. The following statement was implemented to the GA:

1 if N2<N1

2 N2=N1+N2 -1

3 end

4.4.3 Number of bits

In the GA the resolution for each parameter is described by the number of bits
and the upper and lower bounds on that parameter. Hence, once the upper and
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lower bounds have been decided the number of bits must be carefully chosen to
ensure a resolution of unity. The number of bits is defined as:

Nbits = log2

(

Nup − Ndown

R
+ 1

)

(4.16)

where Nup defines the upper bound on the search area, Ndown the lower bound,
and R is the resolution.

4.4.4 Terminating the genetic algorithm

The GA runs in the loop as long as the predefined user criteria are not achieved,
see flow chart 4.6. The algorithm may be terminated if:

• a predefined maximum number of the generations has been reached,

• the algorithm has converged e.g. the cost function over a specified number
of generations has remaind unchanged,

• GA has reached a prespecified minimum value of the cost function.

A combination of the first two criteria was used e.g.

1 if gen >50

2 if Best(gen -49)== Best(gen)

3 gen=MaxGen ;

4 end

5 end

where MaxGen was predefined as MaxGen = 200. As shown if figure 4.10(a)
if the algorithm converged quickly the GA terminated prior to the predesigned
value. In this case the GA terminated at the 69th generation. In most of the
analysed cases the maximum number of generations was not achieved. When the
T polynomial was included for tuning, the problem became more complex, hence
the number of required iterations was larger. This is shown in figure 4.10(b).
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G1(s)
Nu = 1 Nu = 3

IAE 1.694{N1=1,N2=2} 1.381{N1=2,N2=4}

MM 0.252{N1=1,N2=2} 0.132{N1=2,N2=4}

G5(s)
Nu = 1 Nu = 3

IAE 6.8828{N1=18,N2=19} 5.711{N1=6,N2=20}

MM 5.3 ∗ 10−3
{N1=18,N2=19} 5.51 ∗ 10−3

{N1=6,N2=20}

G10(s)
Nu = 1 Nu = 2

IAE 3.2217{N1=1,N2=2} 2.0417{N1=1,N2=2}

MM 0.2454{N1=1,N2=2} 0.2925{N1=1,N2=2}

Table 4.1: Minimum values integrated absolute error and modulus margin for
selected systems

4.5 Tuning of the GPC controller

Numerous methods are available for tuning the GPC controller. Seven of them
were studied by Rani et al. [25], whilst other techniques, such as the genetic
algorithm, also exist. The variables like N1, N2, λ and the third order T poly-
nomial were tuned. To demonstrate how the prediction and control horizon
effect the searching area, the transfer functions G1(s), G5(s) and G10(s) are
considered. The results are presented in table 4.1.

Tuning model G1(s) The solution space, as a function of parameters N1, N2

is illustrated in figure 4.11. The first row, figures 4.11(a) and 4.11(b), illustrates
the IAE of the servo response as a function of {N1, N2} while the second row
shows how variations in {N1, N2} influence the modulus margin. The minimum
value of the matrix presented in figure 4.11(a) is for N1 = 1 and N2 = 2, the
control horizon in this case is set to 1 and the T polynomial does not affect
the servo response, hence it is set to 1. For small values of N1 and N2 the
IAE is small, which means that the servo response is very fast, but the modulus
margin, presented in figure 4.11(c), decreases so the system is less stable. For the
minimum IAE, the modulus margin was also minimised, which is undesirable.

The second column, figures 4.11(b) and 4.11(d), presents the case where
the control horizon Nu is set to three. In figure 4.11(b) the minimum IAE is
for N1 = 2 and N2 = 4 and the modulus margin for the same parameters is
smaller, so the system is less stable. Thus incorporating the control horizon is
beneficial in terms of optimizing the servo performance, however the standard
performance versus robustness trade off remains. Similar results were obtained
for systems G2(s) and G3(s).
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Figure 4.11: Study of a searching area for the system G1
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Figure 4.12: Study of a searching area for the system G5
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Figure 4.13: Study of a searching space for the system G10

Tuning model G5(s) An example of non–convex surface is presented by
the inverse unstable system G5(s) defined by equation 2.13. Figures 4.12(a)
and 4.12(b) present the IAE of the servo response for the system G5(s). In this
case smaller values of {N1, N2} does not necessarily yield enhance servo perfor-
mance. In figure 4.12(a) when the control horizon is set to 1 the minimum IAE
is for N1 = 18 N2 = 19. When the control horizon is set to three the searching
area looks different, the minimum IAE is for N1 = 6 N2 = 20. The search area
of this system is very complex, hence this is difficult to find a minimum for this
system. Tuning of this system presents a good test for applying the genetic al-
gorithm. For the systems examined in this report it was found that, in general,
as N2 decreased, the modulus margin decreased as well, which is undesirable.
The exception is G10(s), which is presented in the next paragraph.

Tuning model G10(s) The IAE and the modulus margin do not always de-
crease simultaneously. The effect of {N1, N2} on the IAE and the modulus
margin is presented in figure 4.13. Examining 4.13(a) and 4.13(c) it is evident
that as the minimum IAE and maximum value of MM coincide for N1 = 1,
N2 = 2. The minimum IAE occurs for N1 = 1, N2 = 2 when control horizon
is Nu = 1. The surface plot area alternated dramatically by this small change
in Nu. If Nu is increased to Nu = 2 the surface plot is altered dramatically,
however the minimum IAE still occurs for N1 = 1, N2 = 2 and the MM is also
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quite large for these parameters.
For models G1(s) and G10 common optimisation techniques such as quadratic

and linear programming can be used. For models such as G5(s), where the op-
timization surface is non–convex the classical methods will not always find a
global solution. This statement also applies if the dimension of the search space
increases e.g. if λ or the T polynomial are included.



Chapter 5

Results

Firstly, the structure and theoretical bases of both controllers will be compared
and the performance comparison will be presented in the next section. Tables
with results for the PI controller are in appendix B.1 and for the GPC controller
B.2, B.3 and B.4.

When comparing two controllers it is imperative that they are compared at
a peer-to-peer level. For this reason the popular PI tuning rules such as those
proposed by Ziegler and Nichols are abandoned for the much more powerful
optimisation technique such as the Genetic Algorithms (GA). Both controllers
have been tuned using the same algorithm. In other words properties of the GA
like the population size, the generation gap, maximum number of generations
etc., are the same for both tuning techniques. The same objective function was
used in both cases evaluate like with like. This enables a fair comparison of
both control laws [22].

The PID control law was presented in section 3.1 and details of GPC control
law are given in section 3.2. Here only the main properties of both of them will
be considered. Both controllers use a model of the process. The model has to be
obtained to tune both controllers. The PI controller does not have information
about the future behavior of the plant, in comparison with the GPC controller
which has that information. For the GPC controller a number of tuning knobs
is available, contrasting to the PI case where only Kp and Ki are tuneable. The
structure and control law of the GPC controller is much more complex than the
PI controller.

5.1 PI controller in comparison with the GPC

controller

Figure 5.3 presents the IAE of servo and regulatory response as well as the
modulus margin. The white bars illustrate results for the PI controller and the
black for the GPC. Models G3(s) and G13(s) are not compared in figures 5.3(a)
and 5.1(a) due to readability the bar chart. The GPC controller outperforms
the PI controller in all analysed cases exclude the first order system, G14(s),
when only IAE is considered. In terms of robustness, where the MM denotes
how robust the controller is, the PI controller surpasses the GPC controller in
most cases. Modulus margin results, figure 5.3(b), for models G7(s) and G10(s)

33
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are quite similar. Generally the GPC controller has faster response, however is
less robust. Note that the cost function of the GA was described only as the
IAE and robust criteria were not included, see section 4.4.1. The case when
the cost function is described as regulatory response is analysed in figure 5.2(a).
Similarly to figure 5.3(a) the GPC controller for analysed systems outperforms
the PI controller and is less robust.

The results are compared based upon optimizing the servo response, then
the GPC controller outperforms the PI controller in 12 of the 13 cases studied,
the exception being G14(s). When the control horizon is included as a variable,
the IAE optimized values are better in comparison to the tuning where the Nu

is fixed.
There is no additional improvement of the GPC controller when the P nu-

merator is included and the cost function is described as equation 4.3. The
tuning models with P numerator were only for combined case (servo response
and load disturbance).

An example of the OSAC controller is for models G4(s), G6(s), G14(s) and
G10(s) when the cost function was described as IAE servo response and sum of
both responses (servo and regulatory), see the table in appendix B.2. When the
control horizon, Nu, was included as a tuning knob only designed controller for
first order system, G14(s), behaved like the OSAC, appendix B.3. When the T
polynomial and the P numerator were tuned the OSAC strategy did not appear
in any of the analysed models, appendix B.4.

Tuning of model G1(s) defined by equation 2.7 was presented for instance
by Ya–Gang Wang and et al. [28]. In this paper the design of the PI controller
is based on optimization of load disturbance rejection with constrains that the
Nyquist curve of the loop transfer function is tangent to a line parallel to the
imagine axes in the left - half of the complex plane.

The conclusion is that for more complex systems the servo response and
disturbance rejection of the GPC controller is better than the PI controller.
When the robust parameters are considered, only the system with pure time
delay, G7, satisfies the recommendations (MM > 0.5, GM > 6dB, etc.). For
model with time delay, G3, the initial control horizon, N1, was constrained from
22 samples.
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Figure 5.1: Bar chart when cost function is described as IAE servo response
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Chapter 6

Conclusions

The benchmark was successfully applied to the models. The GPC controller has
faster response than the PI controller of the models analysed except the first
order system. The benchmark also introduced the author to the robust control
problem. Good servo response and disturbance rejection does not indicate that
the robust parameters are satisfied. In real time systems, the optimised tuning
parameters for the GPC controller may not be as good as during simulations.
The research gave an idea to tune controllers not only depend on servo response
or disturbance rejection, but also include important robust parameters to the
cost function and trade off them.
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Appendix A

An example of GPC

implementation

In this appendix is shown an implementation of GPC algorithm to linear control
law via a numerical example. It is assumed that the GPC tuning knobs are set
as follows:

• Minimum cost horizon, N1 is set to 1

• Maximum cost horizon, N2 = 3

• Control horizon , Nu = 3

• The control weighting coefficient, λ = 0

• T polynomial, and P numerator are not included.

The plant described as a CARIMA model, is:

(1 − 0.8z−1) ∗ y(t) = (0.4z−1 + 0.6z−2) ∗ u(t − 1) + x(t),

where x(t) is set to zero, assuming no disturbance signal, the model polynomials
are as follows

A(z−1) = 1 − 0.8z−1

B(z−1) = 0.4z−1 + 0.6z−2

if
∆ = 1 − z−1

then
A ∗ ∆ = Ã = (1 − 0.8z−1) ∗ (1 − z−1) = 1 − 1.8z−1 + 0.8z−2

Using the theory of Diophantine equation, the following equation can be solved

1 = EjA∆ + z−jFjz
−1

The solution may be obtained by long division of polynomials 1
A∆ , until the

result can be factorized as z−1Fj the quotient of the division and the remainder
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are obtained below:

1 + 1.8z−1+2.44z−2

1−1.8z−1 +0.8z−2
)

1
1−1.8z−1 +0.8z−2

1.8z−1 −0.8z−2 ⇒ E1 = 1 F1 = 1.8 − 0.8z−1

1.8z−1−3.24z−2+1.44z−3

2.44z−2−1.44z−3 ⇒ E2 = 1 + 1.8z−1 F2 = 2.44 − 1.44z−1

2.44z−2−4.392z−3+1.952z−4

2.952z−3 −1.952z−4⇒ E3 = 1 + 1.8z−1 + 2.44z−2

F3 = 2.952z−1 − 1.952z−2

The matrix G is obtained from the following expression

G′
j = Ej ∗ B

G′
1 = 1 ∗ (0.4z−1 + 0.6z−2) = 0.4z−1 + 0.6z−2

G′
2 = (1 + 1.8z−1) ∗ (0.4z−1 + 0.6z−2) = 0.4z−1 + 1.32z−2 + 1.08z−3

G′
3 = (1 + 1.8z−1 + 2.44z−2)∗(0.4z−1 + 0.6z−2) = 0.4z−1+1.32z−2+2.056z−3+1.464z−4

The quotient of the division and the remainder are below:

G1 = 0 Ḡ1 = 0.4 + 0.6z−1

G2 = 0.4 Ḡ2 = 1.32 + 1.08z−1

G3 = 0.4 + 1.32z−1 Ḡ3 = 2.056 + 1.464z−1

The dimension of matrix G is N2 × Nu, so 3 × 3 in this particular case.

F =





1.8 −0.8
2.44 −1.44
2.952 −1.952



 G =





0 0 0
0.4 0 0
1.32 0.4 0



 Ḡ =





0.4 0.6
1.32 1.08
2.056 1.464





The H matrix is calculated from the equation:H = (G
T

G + λI)
−1 ∗ GT , hence

H =









0 0.4 1.32
0 0 0.4
0 0 0



 ∗





0 0 0
0.4 0 0
1.32 0.4 0



+ 0 ∗





1 0 0
0 1 0
0 0 1









−1

∗





0 0.4 1.32
0 0 0.4
0 0 0





H =





0 2.5 0
0 −8.25 2.5
0 0 0





h =
∑

first row of H, in this case h = 2.5
S polynomial is the first row of H ∗ F

H ∗ F =





0 2.5 0
0 −8.25 2.5
0 0 0



 ∗





1.8 −0.8
2.44 −1.44
2.952 −1.952



 =





6.1 −3.6
−12.75 7
0 0





hence the S polynomial S = 6.1 − 3.6z−1

R polynomial is the first row of H ∗ Ḡ

H ∗ Ḡ





0 2.5 0
0 −8.25 2.5
0 0 0



 ∗





0.4 0.6
1.32 1.08
2.056 1.464



 =





3.3 2.7
−5.75 −5.25
0 0




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y(t)e(t) u(t)r(t)
B(z−1)
A(z−1)

T
∆(T+z−1R)

S
P (1)∗T

h

Figure A.1: The block diagram implementation of the GPC controller

the R polynomial R = 3.3 + 2.7 ∗ z−1. Implementation of the GPC controller is
shown on figure A.1, where P (1) denotes the static gain of the P polynomial.



Appendix B

Results

B.1 The PI controller

Process Cost Kp Ki IAE Mp Ms GM PM DM MM Disturbance Step response
function (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

G1(s)

IAE at
response

1.573 0.500 4.389 1.19 1.81 3.54 53 1.39 0.55 13.0 0 2 2.4 1.9 12.9 9.6

IAE at
disturbance

3.429 0.899 4.812 3.18 3.65 1.74 20 0.31 0.27 13.9 7 1.3 3.7 1.1 45.6 23.3

both 2.044 0.674 4.096 1.63 2.23 2.69 39 0.82 0.45 11.3 0.45 1.5 2.6 1.5 26.4 13.9

G2(s)

IAE at
response

5.340 3.992 0.684 1.36 1.81 4.84 43 0.19 0.55 3.3 0 0.25 0.4 0.3 23.4 1.7

IAE at
disturbance

14.687 15.606 0.860 5.00 5.33 1.63 12 0.03 0.19 2.1 6.9 0.072 0.8 0.1 71.1 4.8

both 7.485 6.905 0.618 1.89 2.32 3.31 31 0.11 0.43 2.1 0 0.14 0.5 0.2 39.9 2.4

4
4



Process Cost Kp Ki IAE Mp Ms GM PM DM MM Disturbance Step response
function (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

G3(s)

IAE at
response

0.367 0.043 48.373 1.00 1.92 2.12 64 24.51 0.52 92.2 3.2 24 24.2 13.8 3.3 74.1

IAE at
disturbance

0.374 0.043 48.373 1.00 1.93 2.10 65 24.55 0.52 92.1 3.2 24 24.2 13.6 3.3 74.0

both 0.372 0.043 48.371 1.00 1.93 2.11 64 24.54 0.52 92.2 3.2 24 24.2 13.7 3.3 74.0

G4(s)

IAE at
response

0.472 0.001 41.450 1.30 1.79 4.22 46 1.96 0.56 40.0 0 78 4.0 3.0 23.5 15.7

IAE at
disturbance

1.122 0.105 16.164 6.06 6.44 1.45 10 0.24 0.16 39.5 9.6 11 9.8 1.5 81.4 39.4

both 1.237 0.132 16.004 9.64 10.03 1.27 6 0.14 0.10 40.0 22 12 12.9 1.4 88.7 40.0

G5(s)

IAE at
response

0.455 0.177 12.696 1.22 2.15 1.92 61 5.26 0.47 22.0 32 6.8 5.9 3.0 5.0 17.4

IAE at
disturbance

0.484 0.185 12.666 1.36 2.28 1.82 59 4.78 0.44 21.6 32 6.7 5.9 2.7 9.7 16.9

both 0.468 0.182 12.641 1.29 2.21 1.87 60 5.00 0.45 21.8 32 6.8 5.9 2.9 7.5 17.2

G6(s)

IAE at
response

0.755 1.076 2.092 1.00 1.85 2.33 66 1.13 0.54 5.4 4.7 0.99 1.1 0.9 5.6 4.6

IAE at
disturbance

0.784 1.336 2.060 1.13 2.06 2.06 58 0.85 0.49 5.6 9 0.9 1.2 0.8 17.6 5.6

both 0.773 1.218 2.036 1.03 1.96 2.17 61 0.96 0.51 5.5 6.6 0.91 1.1 0.9 12.0 4.7

G7(s)

IAE at
response

0.343 0.768 2.707 1.00 1.92 2.13 63 1.35 0.52 5.0 11 1.3 1.4 0.8 11.1 4.1

IAE at
disturbance

0.327 0.761 2.695 1.00 1.88 2.18 63 1.36 0.53 4.6 8.9 1.3 1.4 0.8 8.8 4.1

both 0.327 0.755 2.680 1.00 1.87 2.19 63 1.38 0.53 4.6 8 1.3 1.4 0.8 8.1 4.0

G8(s)

IAE at
response

0.637 0.001 91.031 1.14 1.80 2.47 53 1.46 0.56 100.0 0 inf 2.3 1.4 15.2 5.5

IAE at
disturbance

0.919 0.224 9.041 3.13 3.75 1.50 21 0.39 0.27 15.6 8.6 4.9 4.1 0.8 83.4 15.5

both 0.831 0.204 8.752 2.55 3.17 1.65 25 0.50 0.32 16.1 3.6 5 3.7 0.8 75.1 13.2



Process Cost Kp Ki IAE Mp Ms GM PM DM MM Disturbance Step response
function (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

G10(s)

IAE at
response

4.492 2.612 0.892 1.69 2.19 3.04 36 0.12 0.46 4.3 0.068 0.38 0.5 0.2 35.3 2.9

IAE at
disturbance

7.252 8.675 0.904 4.26 4.65 1.65 14 0.04 0.22 2.2 7 0.13 0.8 0.2 69.9 4.7

both 4.633 5.901 0.725 2.22 2.67 2.54 27 0.09 0.37 1.9 0.11 0.17 0.6 0.2 52.5 2.9

G11(s)

IAE at
response

3.160 2.685 0.761 1.24 1.75 4.35 48 0.21 0.57 3.5 0 0.37 0.4 0.3 19.6 1.6

IAE at
disturbance

7.567 9.618 0.841 4.11 4.50 1.66 15 0.04 0.22 2.2 7.1 0.12 0.7 0.2 65.9 4.1

both 4.433 5.532 0.639 1.88 2.35 2.85 32 0.11 0.43 1.9 0 0.18 0.5 0.2 41.7 2.3

G12(s)

IAE at
response

0.834 0.001 116.797 1.56 1.94 7.23 38 1.07 0.52 200.0 0 inf 3.4 2.0 31.8 15.6

IAE at
disturbance

2.476 0.245 13.486 7.76 7.98 1.74 8 0.12 0.13 42.0 6.8 4.7 8.8 1.0 77.6 55.4

both 1.524 0.185 11.338 3.99 4.20 2.61 15 0.29 0.24 32.3 1.7 5.5 5.8 1.3 69.6 32.2

G13(s)

IAE at
response

99.776 0.001 128.920 1299774.65 1299774.65 Inf 0 0.00 0.00 199.5 0 2 128.6 0.1 102.1 200.0

IAE at
disturbance

99.789 0.001 128.885 1300013.99 1300013.99 Inf 0 0.00 0.00 199.5 0 2 128.6 0.1 102.1 200.0

both 999.02 0.999 65 31592 31592.28 Inf 0 0.00 0.00 199.5 0 0.096 65.30 0.026 105 99.99

G14(s)

IAE at
response

999.992 100.013 0.020 1.00 1.00 Inf 90 0.02 1.00 0.0 0.042 0.01 0.0 0.0 0.0 0.0

IAE at
disturbance

196.066 999.992 0.075 1.15 1.00 Inf 76 0.07 1.00 0.0 0 0.001 0.1 0.1 13.5 0.5

both 999.024 0.999 0.019 1.00 1.00 Inf 90 0.02 1.00 0.0 0 0.26 0.3 0.0 -0.1 0.0



B.2 The GPC controller — fixed control horizon

No of Cost Ts N1 N2 Nu λ T polynomial IAE Mp Ms GM PM DM MM Disturbance Step response
system function (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

G1(s)

IAE at
response

0.70 1 2 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 1.33 1.00 3.95 2.59 21 0.20 0.25 3.0 7.5 0.28 1.1 1.0 8.0 2.9

IAE at
disturbance

0.70 1 2 1 1 ∗ 10−6 (1 + 0.342z−1)(1 + 0.336z−1)(1 + 0.399z−1) 1.23 1.00 9.35 -0.93 -6 0.09 0.11 3.1 38 0.18 1.1 1.0 8.0 2.9

both 0.70 1 2 1 1 ∗ 10−6 (1 + 0.341z−1)(1 + 0.392z−1)(1 + 0.34z−1) 1.23 1.00 9.29 -0.94 -6 0.09 0.11 3.1 37 0.18 1.1 1.0 8.0 2.9

G2(s)

IAE at
response

0.10 1 2 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 0.163 1.00 4.35 2.32 18 0.02 0.23 0.4 6.2 0.011 0.2 0.1 7.0 0.4

IAE at
disturbance

0.10 1 2 1 1 ∗ 10−6 (1 + 0.327z−1)(1 + 0.343z−1)(1 + 0.319z−1) 0.159 1.00 9.39 -0.93 -6 0.01 0.11 0.3 33 0.0072 0.2 0.1 7.0 0.4

both 0.10 1 2 1 1 ∗ 10−6 (1 + 0.326z−1)(1 + 0.335z−1)(1 + 0.334z−1) 0.159 1.00 9.46 -0.92 -6 0.01 0.11 0.3 34 0.0072 0.2 0.1 7.0 0.4

G3(s)

IAE at
response

0.70 23 23 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 30 1.00 14.05 0.64 -4 0.02 0.07 33.5 3.5 14 15.9 0.7 11.2 17.1

IAE at
disturbance

0.70 22 23 1 1 ∗ 10−6 (1 + 0.673z−1)(1 − 0.0986z−1)(1 − 0.0156z−1) 29.8 1.00 46.98 0.19 1 0.00 0.02 33.0 9.5 14 15.9 0.7 15.8 17.9

both 0.70 23 23 1 1 ∗ 10−6 (1 − 0.00781z−1)(1 − 0.0176z−1)(1 + 0.635z−1) 29.8 1.00 44.19 0.20 1 0.01 0.02 33.0 10 14 15.9 0.7 11.2 17.1

G4(s)

IAE at
response

0.20 2 2 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 0.391 1.03 9.23 1.08 7 0.02 0.11 0.0 17 0.0072 0.4 0.3 12.0 1.3

IAE at
disturbance

0.20 2 2 1 1 ∗ 10−6 (1 + 0.483z−1)(1 + 0.486z−1)(1 + 0.524z−1) 0.388 1.03 47.10 -0.18 -1 0.01 0.02 0.0 42 0.0038 0.4 0.3 12.0 1.3

both 0.20 2 2 1 1 ∗ 10−6 (1 + 0.502z−1)(1 + 0.49z−1)(1 + 0.501z−1) 0.388 1.03 46.90 -0.18 -1 0.01 0.02 0.0 42 0.0038 0.4 0.3 12.0 1.3

G5(s)

IAE at
response

0.15 8 51 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 8.64 1.02 15.32 0.73 -4 0.15 0.07 9.8 100 3.7 4.9 3.7 0.0 8.9

IAE at
disturbance

0.15 8 48 1 1 ∗ 10−6 (1 + 0.737z−1)(1 + 0.736z−1)(1 + 0.737z−1) 8.36 1.02 756.64 -0.01 0 0.12 0.00 9.5 140 3.4 4.9 3.7 0.0 8.9

both 0.15 8 50 1 1 ∗ 10−6 (1 + 0.73z−1)(1 + 0.738z−1)(1 + 0.733z−1) 8.36 1.02 721.85 -0.01 0 0.12 0.00 9.5 140 3.4 4.9 3.7 0.0 8.9

G6(s)

IAE at
response

0.10 2 2 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 0.197 1.04 9.47 1.05 7 0.01 0.11 0.0 17 0.0043 0.2 0.1 15.4 0.7



No of Cost Ts N1 N2 Nu λ T polynomial IAE Mp Ms GM PM DM MM Disturbance Step response
system function (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

IAE at
disturbance

0.10 2 2 1 1 ∗ 10−6 (1 + 0.596z−1)(1 + 0.438z−1)(1 + 0.478z−1) 0.195 1.04 52.31 -0.16 -1 0.00 0.02 0.0 44 0.0023 0.2 0.1 15.4 0.7

both 0.10 2 2 1 1 ∗ 10−6 (1 + 0.499z−1)(1 + 0.505z−1)(1 + 0.511z−1) 0.195 1.04 51.25 -0.17 -1 0.00 0.02 0.0 44 0.0023 0.2 0.1 15.4 0.7

G7(s)

IAE at
response

0.10 23 55 1 0.078 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 2.1 1.00 2.00 6.02 60 0.04 0.50 2.1 0 1.1 1.1 0.0 99.5 2.1

IAE at
disturbance

0.10 10 73 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 2.1 1.00 2.00 6.02 -60 0.04 0.50 2.1 0 1.1 1.1 0.0 100.0 2.1

both 0.10 10 73 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 2.1 1.00 2.00 6.02 -60 0.04 0.50 2.1 0 1.1 1.1 0.0 100.0 2.1

G8(s)

IAE at
response

0.10 10 11 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 1.71 1.00 23.99 0.37 2 0.00 0.04 2.2 0.02 0.66 1.1 0.1 0.0 1.1

IAE at
disturbance

0.10 10 11 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0.00781z−1)(1 + 0z−1) 1.71 1.00 24.34 0.36 2 0.00 0.04 2.2 0.73 0.66 1.1 0.1 0.0 1.1

both 0.10 10 11 1 1 ∗ 10−6 (1 + 0.00391z−1)(1 − 0.000977z−1)(1 − 0.000977z−1) 1.71 1.00 24.08 0.37 2 0.00 0.04 2.2 0.14 0.66 1.1 0.1 0.0 1.1

G10(s)

IAE at
response

1.00 1 1 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 2.03 1.00 5.34 1.80 17 0.15 0.19 3.3 65 1.4 0.6 0.7 12.8 2.5

IAE at
disturbance

1.00 1 2 1 1 ∗ 10−6 (1 + 0.192z−1)(1 + 0.221z−1)(1 − 0.675z−1) 2.17 1.00 3.53 2.89 32 0.34 0.28 3.6 3.9 1.1 1.1 1.7 -0.4 5.0

both 1.00 1 1 1 1 ∗ 10−6 (1 − 0.0234z−1)(1 − 0.693z−1)(1 + 0.103z−1) 1.73 1.00 3.43 2.99 31 0.33 0.29 2.8 5.3 1.1 0.6 0.7 12.8 2.5

G11(s)

IAE at
response

0.10 1 2 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 0.172 1.00 4.32 2.36 18 0.02 0.23 0.4 7.4 0.019 0.2 0.1 7.8 0.4

IAE at
disturbance

0.10 1 2 1 1 ∗ 10−6 (1 + 0.367z−1)(1 + 0.363z−1)(1 + 0.367z−1) 0.165 1.00 10.41 -0.82 -6 0.01 0.10 0.4 37 0.012 0.2 0.1 7.8 0.4

both 0.10 1 2 1 1 ∗ 10−6 (1 + 0.373z−1)(1 + 0.36z−1)(1 + 0.369z−1) 0.165 1.00 10.50 -0.81 -5 0.01 0.10 0.4 37 0.012 0.2 0.1 7.8 0.4

G12(s)

IAE at
response

0.20 1 6 3 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 0.168 1.00 8.82 1.06 7 0.01 0.11 0.0 37 0.0033 0.2 0.2 17.5 0.8

IAE at
disturbance

0.20 1 3 3 1 ∗ 10−6 (1 − 0.337z−1)(1 − 0.326z−1)(1 + 0.453z−1) 0.168 1.00 8.83 1.04 9 0.01 0.11 0.0 13 0.0027 0.2 0.1 22.5 0.8

both 0.20 1 6 3 1 ∗ 10−6 (1 − 0.278z−1)(1 + 0.433z−1)(1 − 0.355z−1) 0.167 1.00 8.77 1.05 9 0.01 0.11 0.0 13 0.0027 0.2 0.2 17.5 0.8

G13(s)

IAE at
response

0.10 1 2 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 0.161 1.00 3.63 3.47 18 0.02 0.28 0.0 6.8 0.0034 0.2 0.2 6.8 0.5



No of Cost Ts N1 N2 Nu λ T polynomial IAE Mp Ms GM PM DM MM Disturbance Step response
system function (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

IAE at
disturbance

0.10 1 2 1 1 ∗ 10−6 (1 + 0.78z−1)(1 + 0.308z−1)(1 + 0.543z−1) 0.159 1.00 10.33 0.90 9 0.01 0.10 0.0 12 0.0013 0.2 0.2 6.8 0.5

both 0.10 1 2 1 1 ∗ 10−6 (1 + 0.389z−1)(1 + 0.407z−1)(1 + 1z−1) 0.159 1.00 12.08 0.75 9 0.01 0.08 0.0 11 0.0011 0.2 0.2 6.8 0.5

G14(s)

IAE at
response

1.00 1 1 1 1 ∗ 10−6 (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 0.587 1.00 3.81 2.65 26 0.26 0.26 1.6 0 0.095 0.5 0.8 0.0 0.9

IAE at
disturbance

1.00 1 1 1 1 ∗ 10−6 (1 + 0.0313z−1)(1 − 0.0234z−1)(1 + 0.00586z−1) 0.587 1.00 3.86 2.60 25 0.25 0.26 1.6 1.3 0.095 0.5 0.8 0.0 0.9

both 1.00 1 1 1 1 ∗ 10−6 (1 − 0.0254z−1)(1 + 0.0488z−1)(1 − 0.0107z−1) 0.587 1.00 3.86 2.60 25 0.25 0.26 1.6 1.2 0.095 0.5 0.8 0.0 0.9

B.3 The GPC controller — variable control horizon

No of Cost Ts N1 N2 Nu λ T polynomial IAE Mp Ms GM PM DM MM Disturbance Step response
system function (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

G1(s)

IAE at
response

0.70 1 6 3 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 1.04 1.00 5.83 1.64 -12 0.14 0.17 2.6 5.7 0.19 0.8 0.7 12.6 2.4

IAE at
disturbance

0.70 2 55 8 1 ∗ 10−6
(1 + 0.267z

−1)(1 + 0.156z
−1)(1 + 0.204z

−1) 1.04 0.95 10.71 -0.84 -5 0.08 0.09 3.0 38 0.18 0.9 0.8 3.7 1.9

both 0.70 1 6 3 1 ∗ 10−6
(1 + 0.085z

−1)(1 + 0.333z
−1)(1 + 0.0322z

−1) 1.02 1.00 9.20 -1.02 -6 0.09 0.11 3.0 31 0.18 0.8 0.7 12.6 2.4

G2(s)

IAE at
response

0.10 1 7 3 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 0.131 1.00 6.23 1.53 -11 0.02 0.16 0.3 5.6 0.0077 0.1 0.1 12.4 0.3

IAE at
disturbance

0.10 1 26 5 1 ∗ 10−6
(1 + 0.0244z

−1)(1 + 0.149z
−1)(1 + 0.0498z

−1) 0.134 1.00 8.23 1.17 -7 0.01 0.12 0.3 21 0.0071 0.1 0.1 21.9 0.4

both 0.10 1 7 3 1 ∗ 10−6
(1 + 0.0771z

−1)(1 + 0.0107z
−1)(1 + 0.327z

−1) 0.131 1.00 9.37 -0.99 -6 0.01 0.11 0.3 30 0.0071 0.1 0.1 12.4 0.3

G3(s)

IAE at
response

0.70 23 71 4 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 29.9 1.00 17.22 0.52 -4 0.01 0.06 32.8 0.81 14 15.9 0.6 12.7 17.4

IAE at
disturbance

0.70 22 67 12 1 ∗ 10−6
(1 − 0.0156z

−1)(1 − 0.0283z
−1)(1 + 0.263z

−1) 29.8 1.00 42.45 0.21 1 0.01 0.02 33.5 9.7 14 16.0 0.6 24.9 18.7

both 0.70 23 79 4 1 ∗ 10−6
(1 + 0.0156z

−1)(1 − 0.00684z
−1)(1 + 0.416z − 1) 29.7 1.00 40.22 0.22 1 0.01 0.02 33.4 8.4 14 15.9 0.6 12.7 17.4



No of Cost Ts N1 N2 Nu λ T polynomial IAE Mp Ms GM PM DM MM Disturbance Step response
system function (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

G4(s)

IAE at
response

0.20 1 128 4 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 0.326 1.00 11.06 0.83 7 0.01 0.09 0.0 7.9 0.0054 0.3 0.3 4.9 0.8

IAE at
disturbance

0.20 2 128 4 1 ∗ 10−6
(1 + 0.352z

−1)(1 + 0.366z
−1)(1 + 0.385z

−1) 0.33 1.00 16.80 -0.27 -2 0.01 0.06 0.0 35 0.0035 0.3 0.3 4.6 0.8

both 0.20 1 128 4 1 ∗ 10−6
(1 + 0.273z

−1)(1 + 0.597z
−1)(1 + 0.108z

−1) 0.324 1.00 16.28 -0.26 -2 0.01 0.06 0.0 33 0.0035 0.3 0.3 4.9 0.8

G5(s)

IAE at
response

0.15 2 58 6 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 11 10.34 4269.08 0.00 -0 NaN 0.00 2.8 71 8.8 2.3 0.0 200.1 1.3

IAE at
disturbance

0.15 6 51 2 0.31 (1 + 0.784z
−1)(1 + 0.784z

−1)(1 + 0.784z
−1) 7.21 1.47 1026.27 -0.01 -0 0.05 0.00 5.7 130 3.3 3.9 1.8 0.0 5.1

both 0.15 2 36 7 1 ∗ 10−6
(1 − 0.855z

−1)(1 − 0.855z
−1)(1 + 0.938z

−1) 5.52 10.89 379.95 -0.02 -0 0.01 0.00 7.5 210 3.2 2.3 0.0 312.1 1.4

G6(s)

IAE at
response

0.10 1 64 4 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 0.157 1.00 11.88 0.76 -6 0.01 0.08 0.0 5.8 0.003 0.2 0.1 15.5 0.5

IAE at
disturbance

0.10 2 64 4 1 ∗ 10−6
(1 + 0.187z

−1)(1 + 0.389z
−1)(1 + 0.397z

−1) 0.159 1.00 23.18 -0.37 -3 0.00 0.04 0.0 22 0.0021 0.2 0.1 15.8 0.4

both 0.10 1 64 4 1 ∗ 10−6
(1 + 0.272z

−1)(1 + 0.551z
−1)(1 + 0.123z

−1) 0.156 1.00 35.83 -0.24 -2 0.00 0.03 0.0 36 0.002 0.2 0.1 15.5 0.5

G7(s)

IAE at
response

0.10 14 46 1 0.078 (1 + 0z
−1)(1 + 0z

−1)(1 + 0z
−1) 2.1 1.00 2.00 6.02 60 0.04 0.50 2.1 0 1.1 1.1 0.0 99.5 2.1

IAE at
disturbance

0.10 10 73 1 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 2.1 1.00 2.00 6.02 -60 0.04 0.50 2.1 0 1.1 1.1 0.0 100.0 2.1

both 0.10 10 73 1 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 2.1 1.00 2.00 6.02 -60 0.04 0.50 2.1 0 1.1 1.1 0.0 100.0 2.1

G8(s)

IAE at
response

0.10 14 59 2 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 1.71 1.00 24.00 0.37 2 0.00 0.04 2.2 0.021 0.66 1.1 0.1 0.0 1.1

IAE at
disturbance

0.10 11 33 2 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0.000977z

−1) 1.71 1.00 24.04 0.37 2 0.00 0.04 2.2 0.051 0.66 1.1 0.1 0.0 1.1

both 0.10 10 27 16 1 ∗ 10−6
(1 + 0z

−1)(1 + 0.000977z
−1)(1 + 0.000977z

−1) 1.71 1.00 24.07 0.37 2 0.00 0.04 2.2 0.12 0.66 1.1 0.1 0.0 1.1

G10(s)

IAE at
response

1.00 1 22 8 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 2.03 1.00 5.33 1.81 18 0.15 0.19 3.3 64 1.4 0.6 0.7 12.9 2.5

IAE at
disturbance

1.00 2 29 5 0.078 (1 + 0.185z
−1)(1 + 0.183z

−1)(1 + 0.181z
−1) 2.44 1.03 3.75 2.70 31 0.32 0.27 5.0 9.6 1.2 1.3 1.7 5.9 6.8

both 1.00 1 45 9 1 ∗ 10−6
(1 + 0.0996z

−1)(1 − 0.0244z
−1)(1 − 0.693z

−1) 1.73 1.00 3.42 3.01 31 0.33 0.29 2.8 5 1.1 0.6 0.7 12.9 2.5



No of Cost Ts N1 N2 Nu λ T polynomial IAE Mp Ms GM PM DM MM Disturbance Step response
system function (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

G11(s)

IAE at
response

0.10 1 32 4 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 0.135 1.00 7.28 1.31 -9 0.02 0.14 0.3 10 0.012 0.1 0.1 18.6 0.4

IAE at
disturbance

0.10 1 2 1 1 ∗ 10−6
(1 + 0.381z

−1)(1 + 0.345z
−1)(1 + 0.369z

−1) 0.165 1.00 11.02 -0.77 -5 0.01 0.09 0.4 38 0.012 0.2 0.1 7.8 0.4

both 0.10 1 32 4 1 ∗ 10−6
(1 + 0.0459z

−1)(1 + 0.083z
−1)(1 + 0.222z

−1) 0.135 1.00 10.65 -0.86 -6 0.01 0.09 0.3 34 0.011 0.1 0.1 18.6 0.4

G12(s)

IAE at
response

0.20 1 6 3 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 0.168 1.00 8.82 1.06 7 0.01 0.11 0.0 37 0.0033 0.2 0.2 17.5 0.8

IAE at
disturbance

0.20 1 3 3 1 ∗ 10−6
(1 − 0.337z

−1)(1 − 0.326z
−1)(1 + 0.453z

−1) 0.168 1.00 8.83 1.04 9 0.01 0.11 0.0 13 0.0027 0.2 0.1 22.5 0.8

both 0.20 1 6 3 1 ∗ 10−6
(1 − 0.278z

−1)(1 + 0.433z
−1)(1 − 0.355z

−1) 0.167 1.00 8.77 1.05 9 0.01 0.11 0.0 13 0.0027 0.2 0.2 17.5 0.8

G13(s)

IAE at
response

0.10 1 2 1 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 0.161 1.00 3.63 3.47 18 0.02 0.28 0.0 6.8 0.0034 0.2 0.2 6.8 0.5

IAE at
disturbance

0.10 1 2 1 1 ∗ 10−6
(1 + 0.78z

−1)(1 + 0.308z
−1)(1 + 0.543z

−1) 0.159 1.00 10.33 0.90 9 0.01 0.10 0.0 12 0.0013 0.2 0.2 6.8 0.5

both 0.10 1 2 1 1 ∗ 10−6
(1 + 0.389z

−1)(1 + 0.407z
−1)(1 + 1z

−1) 0.159 1.00 12.08 0.75 9 0.01 0.08 0.0 11 0.0011 0.2 0.2 6.8 0.5

G14(s)

IAE at
response

1.00 1 1 1 1 ∗ 10−6
(1 + 0z

−1)(1 + 0z
−1)(1 + 0z

−1) 0.587 1.00 3.81 2.65 26 0.26 0.26 1.6 0 0.095 0.5 0.8 0.0 0.9

IAE at
disturbance

1.00 1 1 1 1 ∗ 10−6
(1 + 0.0313z

−1)(1 − 0.0234z
−1)(1 + 0.00586z − 1) 0.587 1.00 3.86 2.60 25 0.25 0.26 1.6 1.3 0.095 0.5 0.8 0.0 0.9

both 1.00 1 1 1 1 ∗ 10−6
(1 − 0.0254z

−1)(1 + 0.0488z
−1)(1 − 0.0107z − 1) 0.587 1.00 3.86 2.60 25 0.25 0.26 1.6 1.2 0.095 0.5 0.8 0.0 0.9

B.4 The GPC controller — including P numerator

No of Ts N1 N2 Nu λ P numerator T polynomial IAE Mp Ms GM PM DM MM Disturbance Step response
system (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

G1(s) 0.70 2 11 6 1 ∗ 10−6 (1 + 0.138z−1) (1 + 0.188z−1)(1 + 0.251z−1)(1 + 0.178z−1) 1.07 1.00 8.58 -1.12 -7 0.09 0.12 3.0 25 0.18 0.9 0.8 0.8 1.5
G2(s) 0.10 1 7 3 1 ∗ 10−6 (1 − 0.0752z−1) (1 + 0.103z−1)(1 − 0.00879z−1)(1 + 0.321z−1) 0.133 1.00 6.31 1.51 -11 0.02 0.16 0.3 3.5 0.0077 0.1 0.1 19.3 0.4
G3(s) 0.70 23 84 4 1 ∗ 10−6 (1 + 0.612z−1) (1 − 0.0322z−1)(1 + 0.0293z−1)(1 + 0.435z−1) 29.8 1.00 45.02 0.20 1 0.01 0.02 33.5 11 14 15.9 0.6 16.3 17.4



No of Ts N1 N2 Nu λ P numerator T polynomial IAE Mp Ms GM PM DM MM Disturbance Step response
system (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAE IAE Tr yp Ts

G4(s) 0.20 1 128 4 1 ∗ 10−6 (1 + 0.361z−1) (1 + 0.485z−1)(1 + 0.00391z−1)(1 + 0.498z−1) 0.324 1.00 13.64 -0.36 -3 0.01 0.07 0.0 8.8 0.0036 0.3 0.3 4.9 0.8
G5(s) 0.15 5 29 3 1 ∗ 10−6 (1 − 0.783z−1) (1 + 0.645z−1)(1 − 0.921z−1)(1 + 0.647z−1) 5.76 5.66 1198.19 -0.01 -0 NaN 0.00 8.6 290 3.3 2.4 0.6 0.0 1.9
G6(s) 0.10 1 64 4 1 ∗ 10−6 (1 − 0.853z−1) (1 + 0.443z−1)(1 + 0.492z−1)(1 + 0.0137z−1) 0.159 1.00 23.35 -0.36 -3 0.01 0.04 0.0 9.3 0.0021 0.2 0.1 15.8 0.4
G7(s) 0.10 10 73 1 1 ∗ 10−6 (1 − 0.312z−1) (1 + 0z−1)(1 + 0z−1)(1 + 0z−1) 2.1 1.00 2.00 6.02 60 0.04 0.50 2.1 0 1.1 1.1 0.0 99.6 2.1
G8(s) 0.10 11 42 13 1 ∗ 10−6 (1 − 0.136z−1) (1 − 0.000977z−1)(1 + 0z−1)(1 + 0.000977z−1) 1.73 1.00 20.32 0.44 3 0.00 0.05 2.3 0.019 0.67 1.1 0.1 0.0 1.2
G10(s) 1.00 1 45 9 1 ∗ 10−6 (1 − 0.883z−1) (1 − 0.0244z−1)(1 − 0.693z−1)(1 + 0.0996z−1) 2.51 1.02 4.14 2.40 31 0.31 0.24 5.0 14 1.2 1.3 1.8 5.6 6.4
G11(s) 0.10 1 32 4 1 ∗ 10−6 (1 + 0.648z−1) (1 + 0.0664z−1)(1 + 0.0645z−1)(1 + 0.22z−1) 0.165 1.00 8.68 -1.05 -7 0.01 0.12 0.3 30 0.012 0.2 0.1 7.8 0.4
G12(s) 0.20 1 18 16 1 ∗ 10−6 (1 + 0.877z−1) (1 − 0.365z−1)(1 − 0.292z−1)(1 + 0.447z−1) 0.169 1.00 14.68 0.61 7 0.01 0.07 0.0 37 0.0033 0.2 0.1 22.4 0.8
G13(s) 0.10 1 16 3 1 ∗ 10−6 (1 + 0.405z−1) (1 + 0.131z−1)(1 + 0.146z−1)(1 + 1z−1) 0.268 1.00 inf 0.00 NaN 0.10 0.00 0.0 100 0.38 0.1 0.1 1.1 0.2
G14(s) 1.00 1 256 2 1 ∗ 10−6 (1 − 0.933z−1) (1 + 0.00781z−1)(1 + 0.000977z−1)(1 + 0.00488z−1) 0.587 1.00 3.81 2.64 26 0.26 0.26 1.6 0 0.095 0.5 0.8 0.0 0.9
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