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Abstract — This paper attempts to determine whether advanced
control algorithms offer any real benefits to the process industry in
terms of optimising SISO process units. To establish this, a classical
PID controller, Two Degree of Freedom (2–DOF) PID controller and
the Generalised Predictive Controller, GPC, are compared. The
same controller design philosophy is applied to all controllers and
the performance is evaluated on a number of benchmark systems.
Within this framework the GPC performs notably better than the
other two counterparts.

Keywords — PID controller, 2–DOF, GPC, Genetic Algorithm,

gain and phase margin.

I Introduction

Over the past few decades, control engineers, (par-
ticulary academics) have devised a bewildering
range of control algorithms to overcome the lim-
itations of the classical PID controller. Frequently
these proposed techniques are justified based on
superior simulation performance with a PID con-
troller. It is the author’s contention that in many
cases, these claims are unjustified because the PID
controller was poorly designed and tuned, e.g. us-
ing the Ziegler–Nichols technique. Thus, the con-
tribution of this paper is to compare an appro-
priately designed and well tuned PID controller
with an advanced controller algorithm. The mo-
tivation for this study is to determine whether the
advanced control algorithm can offer any real bene-
fits to the process industry in terms of optimising
process units by, for example, maximising through-
put, minimising waste, minimising energy, etc.

As a representative advanced control algorithm
the Model–Based Predictive Control, (MBPC),
paradigm was chosen since MBPC is one control
technique that has made a significant impact on
the process industry. The suitability of MBPC
for large multivariable constrained problems is not
disputed. However, for single–input single–output
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systems the authors believe that PID may achieve
a similar level of performance to MBPC, if the
same amount of time, effort and expertise is inves-
ted. In an effort to establish whether this is indeed
true, the performance of a Two Degree of Freedom
PID Controller, (2–DOF PID), will be compared
with that of the Generalised Predictive Control-
ler, (GPC) [1]. Performance is compared over a
range of classical and a–typical process transfer
function models [2, 3] to enable general conclu-
sions to be drawn. To ensure a fair comparison,
both controllers are tuned to optimise the same
criterion. An intelligent (i.e. from the field of In-
telligent Systems) controller design philosophy is
applied where the optimisation problem is defined
as minimising the integral of error criterion sub-
ject to constraints on the gain and phase margins.
This problem is solved numerically via a genetic al-
gorithm. A benchmark is provided by a similarly
tuned classical PID controller structure.

II Controller description

As mentioned in the introduction three controller
structures will be compared. The classical PID
controller, 2–DOF PID controller, also called the
industrial PID controller [4], and the GPC control-
ler. Section II(a) describes the PID control laws
while the GPC is presented in sec. II(b).
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Fig. 1: Block diagram of 2–DOF PID controller

II(a) PID controllers

The classical PID controller is given by equation 1

U(s) = E(s)

(

Kp +
Ki

s
+ Kds

)

(1)

where Kp, Ki and Kd are controller parameters,
U(s) is the control signal and the E(s) is the con-
trol error. Equation 1 is known as a single de-
gree of freedom control law because the controller
parameters may be optimised for servo perform-
ance or regulator performance but not both. Most
industrial controllers are considerably more com-
plex than the “textbook” control law of equation 1;
a typical representation is given by equation 2.

U(s) = Kp (bR(s) − Y (s)) +
Ki

s
(R(s) − Y (s))+

sKd (cR(s) − Y (s))

1 + sKd

KpN

(2)

In equation 2, R(s) is the set–point, Y (s) is the
process output, N is the derivative filter, b and
c are weightings that influence the set–point re-
sponse. This equation may be restructured as

U(s) = R(s)F (s) − Y (s)H(s) (3)

where F (s) and H(s) are defined by equations 4
and 5 respectively. This representation is illus-
trated in figure 1, where G(s) is the transfer func-
tion representing the plant.

F (s) = Kpb +
Ki

s
+

sKd

1 + sKd

KpN

c (4)

H(s) = Kp +
Ki

s
+

sKd

1 + sKd

KpN

(5)

Clearly, the industrial PID structure corresponds
to a 2–DOF control law, where the transfer func-
tion H(s) may be chosen to yield optimal regulator
performance while the transfer function F (s) can
be chosen to yield good servo performance. Note
that Kp, Ki, Kd and N appear in both of these
transfer functions, hence it is not possible to spe-
cify the regulator performance independently from

the servo performance. Thus, like the GPC the 2–
DOF PID controller is not a true 2–DOF control-
ler. However, the parameters b and c may be util-
ised to enhance the servo performance and clearly
do not affect the regulator performance. For the
classical PID controller F (s) and H(s) are equal,
given by equation 1.

II(b) Generalised Predictive Controller

The GPC, introduced by Clarke et al. [1], is presen-
ted as an alternative to the PID controller. There
are three major components in the design of a
GPC:

• A model of the system to be controlled. This
model is used to predict the system out-
put over the prediction horizon. The GPC
uses a Controlled AutoRegressive and Integ-
rated Moving Average, CARIMA, model of
the form:

A(z−1)y(t) = B(z−1)u(t − 1) + C(z−1)
ξ(t)

∆
(6)

where

B is the plant numerator in z−1

A is the plant denominator in z−1

ξ(t) is an uncorrelated random sequence

∆ differencing operator defined as 1 − z−1.

In GPC, if the observer polynomial T (z−1)
is set equal to C(z−1) of equation 6 a min-
imum variance predictor results. However,
since it is difficult to estimate C(z−1) accur-
ately, T (z−1) is usually chosen for robustness
rather than optimality [5, 6] and forms one of
the GPC tuning parameters.

• The remaining tuning parameters arise from
the definition of the GPC cost function

J = E

{

N2
∑

j=N1

[y(t + j) − w(t + j)]2+

Nu
∑

j=1

λ(j)[∆u(t + j − 1)]2

}

(7)

where

N1 is the minimum cost horizon, subject to
N1 ≤ N2

N2 is the maximum cost horizon

Nu is the control horizon, subject to Nu ≤
N2

λ is the control weighting sequence, subject
to λ ≥ 0



w future reference trajectory

E is the expectation operator.

• This cost function is then minimised to yield
the optimal control output.

III Controller Design

A variety of techniques exist to design or tune PID
controllers. Popular approaches consist of tun-
ing rules [7], Internal Model Control [8], Quantit-
ative Feedback Theory [9] and optimisation pro-
cedures [10]. Regardless of the approach taken
the design must be robust. Robustness may be
achieved through the specification of minimum
gain and phase margins [11] or through the optim-
isation of selected sensitivity functions e.g. H∞

control. PID controllers have traditionally been
designed using gain and phase margin considera-
tions [11, 12] and therefore this approach is ex-
plored in this paper. However, rather than apply-
ing tuning rules to achieve the desired gain and
phase margin criteria [7], an optimisation based
approach will be adopted. This enables the same
controller design philosophy to be applied to all
three of the controllers under investigation and en-
sures a fair comparison of controller performance.
The optimisation was performed by a GA where
the objective function considered is the Integral
of Absolute Error, IAE, criterion subject to con-
strains on the gain and phase margins.

III(a) Genetic Algorithm

The GA approach is an intuitive and mature search
and optimisation technique based on the principles
of natural evolution and population genetics. Typ-
ically the GA starts with little or no knowledge of
the correct solution and depends entirely on re-
sponses from an interacting environment and its
evolution operators to arrive at good solutions.
By dealing with several independent points, the
GA samples the search space in parallel and hence
is less susceptible to converging to a suboptimal
solution. In this way the GA has been shown to
be capable of locating high performance areas in
complex domains without experiencing the diffi-
culties associated with false optima, as may occur
with gradient descent techniques. Thus the GA
has been recognised as a powerful tool in many
control applications.

The structure of the GA was broadly similar to
that described by [13] and is popularly known as
the simple or canonical GA. The controller para-
meters were encoded using using Gray coding and
an initial, randomly generated population of 100
individuals was used. At each iteration parents
were probabilistically selected using stochastic uni-
versal sampling, while offsprings were generated
using single point crossover (probability = 1) and
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Fig. 2: Constraining factor

a single bit mutation (probability=0.0233 for the
PID controller, 0.0143 for the 2–DOF, a 0.0130
for the GPC). The algorithm terminated after 300
generations, though in most cases convergence oc-
curred much sooner. With the PID controller the
three parameters Kp, Ki and Kd were tuned. Each
of these parameters was optimised over the range
0 − 20, represented as 10 bit segments with a res-
olution of 0.01. In the 2–DOF PID controller the
parameters Kp, Ki, Kd, b, c had the same resol-
ution as the PID controller parameters. The re-
maining parameter N was tuned over the range
0−31 and represented with 5 bits. With the GPC
controller the parameters T (z−1) and λ had a res-
olution of 0.01 and N1, N2, Nu were specified as
integers.

III(b) Objective function

The critical component of any optimisation is the
design of the objective function to be minimised.
As mentioned previously, the objective function
employed here incorporates robustness via con-
strains on the gain and phase margins. These con-
straints were implemented as follows. First con-
sider the standard Gaussian function

y = e−x2

(8)

If this function is modified by appropriate scaling
(trial and error) it is possible to generate curves
such as illustrated in figure 2. Consider figure 2(a).
If the gain margin is less than 6(dB) then the
contribution by this function to the overall cost
is large, hence the cost function will be heav-
ily weighted, regardless of the IAE; while if the



gain margin is greater than 6(dB) the contribu-
tion is constant at unity. Similarly, figure 2(b),
illustrates a weighting function which directs the
search for suitable phase margins. Mathematically
these curves are represented by equations 9 and 10

λAm = 10 − 9e−2(Am−Am)
2

(9)

λφm = 10 − 9e−0.0025(φm−φm)2

(10)

where Am is the measured gain margin, Am is the
specified minimum value, both expressed as abso-
lute values, φm is the measured phase margin (in
degrees) and φm is the specified minimum value.

The IAE of the servo and regulatory response is
calculated using equation 11

IAE =

t
1
−1

∑

k=0

|e(k)| +

t2
∑

k=t1

|e(k)| (11)

where e(k) is the control error and t1 is time at
which the disturbance, D(s), is applied (see fig-
ure 1). Therefore the IAE servo is calculated over
the period 0 < t < t1, and the IAE regulator is
calculated over the period t1 ≤ t ≤ t2.

The various objective functions are then

JPID = min
Kp,Ki,Kd

{IAE · λAm · λφm} (12)

J2−DOF = min
Kp,Ki,Kd,b,c,N

{IAE · λAm · λφm} (13)

JGPC = min
N1,N2,Nu,λ,T (z−1)

{IAE · λAm · λφm} (14)

Clearly, if the robustness criteria are satisfied
(λAm = 1 and λφm = 1) equations 12–14 reduce to
minimising the IAE. The criteria 12–14 may then
be interpreted as optimising performance subject
to constraints on robustness.

IV Simulation results

The 2–DOF PID and GPC controller structures
were evaluated by implementing the controller
design equations, 13 and 14 to the list of pro-
cess models 15–26. These benchmark systems
were proposed by Ȧström and Hägglund [2, 3]
and are representative of typical industrial pro-
cess transfer functions. Since the GPC is a dis-
crete time algorithm these transfer functions had
to be sampled. Sampling was performed using the
standard Z–transform and the sampling period, h

varied from 0.01 sec to 0.5 sec, as specified.

G1(s) = 1
(s+1)3

h = 0.02(sec)
(15)

G2(s) = 1
(s+1)3 e−15s

h = 0.04(sec)
(16)

G3(s) = 1
(s+1)(1+0.2s)(1+0.04s)(1+0.008s)

h = 0.01(sec)
(17)

G4(s) = 1
s(s+1)2

h = 0.01(sec)
(18)

G5(s) = 1−2s
(s+1)3

h = 0.1(sec)
(19)

G6(s) = 9
(s+1)(s2+2s+9)

h = 0.1(sec)
(20)

G7(s) = e−s

h = 0.1(sec)
(21)

G8(s) = e−s

s

h = 0.02(sec)
(22)

G9(s) = 1
10s+1

h = 0.5(sec)
(23)

G10(s) = 100
(s+10)2

(

1
s+1 + 0.5

s+0.05

)

h = 0.01(sec)
(24)

G11(s) = 150
(s+10)2(s+1)

h = 0.01(sec)
(25)

G12(s) = (s+6)2

s(s+1)2(s+36)

h = 0.01(sec)
(26)

Prior to discussing the results it is appropriate to
make a few brief comments regarding implement-
ation details. The cost function of section III(b)
was optimised in the MATLAB/Simulink environ-
ment using the GA. Controller evaluation was also
performed in this environment with the gain and
phase margins measured in MATLAB and the IAE
calculated in Simulink. Both the PID and 2–DOF
controllers were implemented in continuous–time
while the GPC controller was implemented as a
discrete time system.

For models with time delay, G2, G7, G8, an 8th

order Padé approximation was used in the calcu-
lation of the gain and phase margins. The control
signal was constrained to the range −10 ≤ u(k) ≤
10. Robustness was achieved by considering re-
quirements for the gain and phase margin. For ex-
ample, [14] specifies that typical minimum require-
ments are a gain margin Am = 1.7 (4.6dB) and a
phase margin φm = 30◦. In the papers [11, 12] the
authors assumed Am = 3 (9.5dB) and φm = 60◦ in
their controller design, while [4, p. 126] recommen-
ded that the gain margin should be in the range
Am = 2−5 (6dB−14dB) and that the phase mar-
gin should be φm = 30◦−60◦. Given the variation
in these recommendations two designs were con-
sidered. The first design specified a minimum gain
margin of Am = 2 (6dB) and a minimum phase
margin φm = 45◦. In the second design, the phase



System PID 2–DOF PID GPC
IAE Am φm IAE Am φm IAE Am φm

G1(s) 2.08 ∞ 44 1.62 14.64 45 1.54 6.83 44
G2(s) 42.9 6.27 64 41 6.02 64 33.52 6.00 59
G3(s) 0.409 22.70 45 0.27 15.59 45 0.208 11.30 45
G4(s) 5.46 ∞ 44 3.51 14.54 45 0.838 11.87 71
G5(s) 10.7 5.94 58 9.94 5.88 55 8.79 6.00 59
G6(s) 1.44 ∞ 45 1.15 13.34 45 0.859 6.97 45
G7(s) 2.59 ∞ 63 2.55 7.05 63 2.11 6.02 60
G8(s) 7.39 8.02 47 4.74 5.82 44 2.83 9.33 71
G9(s) 1.03 ∞ 78 0.533 ∞ 69 0.60 6.02 45
G10(s) 0.38 ∞ 45 0.3 13.04 45 0.195 12.65 51
G11(s) 0.351 ∞ 45 0.259 25.57 44 0.166 9.26 45
G12(s) 1.09 ∞ 45 0.729 ∞ 45 0.531 7.69 52

Table 1: The optimised IAE with Am = 6dB and
φm = 45◦

System PID 2–DOF PID GPC
IAE Am φm IAE Am φm IAE Am φm

G1(s) 2.05 ∞ 45 1.63 14.59 45 1.59 14.02 45
G2(s) 53.9 14.00 63 53.7 14.01 63 55.3 14.00 75
G3(s) 0.407 22.00 45 0.256 17.02 45 0.233 14.00 53
G4(s) 4.47 ∞ 45 3.51 14.76 45 0.838 14.00 70
G5(s) 15.6 14.01 60 15.6 14.02 57 12.8 14.17 67
G6(s) 1.47 ∞ 45 1.15 14.22 45 0.921 14.08 45
G7(s) 2.56 ∞ 62 3.09 14.19 61 2.51 14.44 62
G8(s) 7.39 8.02 47 8.93 13.99 44 2.5 14.81 ∞

G9(s) 1.03 ∞ 77 0.498 ∞ 81 0.68 13.99 48
G10(s) 0.377 ∞ 45 0.331 13.99 45 0.195 14.01 50
G11(s) 0.349 ∞ 45 0.297 14.33 45 0.189 14.01 51
G12(s) 1.09 ∞ 45 0.588 ∞ 48 0.531 14.06 53

Table 2: The optimised IAE with Am = 14dB and
φm = 45◦

margin criteria remained unchanged, but the gain
margin was increased to Am = 5 (14dB).

The simulation results for the first design (Am =
6dB, φm = 45◦) are presented in table 1. Clearly
the design was successful in that the specified min-
imum gain and phase margins were achieved for all
three controllers. If the integral of absolute error
criteria are compared, it is evident that the GPC
controller outperforms the 2–DOF PID controller
which in turn outperforms the 1–DOF PID con-
troller. It is not surprising that the 2–DOF con-
trollers should outperform the 1–DOF controller,
however the GPC controller performs significantly
better than the 2–DOF PID controller — on av-
erage the IAE was reduced by 22%. The most
significant reductions occurred for the two integ-
rating plants, G4(s) where the IAE was reduced
by 76% while for G8(s) a reduction of approxim-
ately 40% was achieved. A cursory examination
of the loop gain margins reveals that on average
the Am associated with the 2–DOF PID control-
ler is larger than the corresponding value of the
GPC controller. This would suggest that a classic
compromise — robustness versus performance —
exists. However, this is unlikely to be the case as
the phase margin associated with the GPC design,
is on average, the same or greater than that for the
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2–DOF PID controller.

To investigate the robustness versus perform-
ance idea further a second design was performed
where the minimum gain margin was increased to
14dB. The results are summarised in table 2. Sur-
prisingly, the results in this case are even clearer.
Ignoring the 1–DOF PID controller for the present,
it is evident that the remaining two controllers
have very similar gain margins, the phase margin
is, in general, larger for the GPC controller and
the GPC IAE is reduced, on average, by approx-
imately 15%.

A selection of closed–loop responses are illus-
trated in figures 3, 4 and 5 where the solid line
represents the response of the GPC controller, the
dashed line that of the 1–DOF PID controller and
the dotted line the 2–DOF PID controller. In
each of these figures the upper plot illustrates the
closed–loop response to a unit step input occurring
at t = 0 and to a unit step disturbance. In figures 3
and 5 the disturbance was applied at t = 10(sec)
while in figure 4 the disturbance occurs at time
t = 35(sec). Also shown are the corresponding
control signals. The superior performance of the
GPC controller is clearly evident in each case.
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V Conclusions

From figures 3, 4 and 5 and the results listed in
tables 1 and 2 it is evident that the design pro-
posed in this paper is very effective. Despite the
wide range of process dynamics: stable, inverse
unstable, integrating, long time delay, stable and
consistent closed–loop performance was obtained
for all of the systems examined. This is particu-
lary true for both of the 2–DOF controllers.

Tables 1 and 2 clearly indicate that the GPC
controller outperforms the other two controllers.
This enhanced performance relative to the simple
1–DOF PID controller is not surprising and has
been well established elsewhere. The GPC and 2–
DOF PID algorithm both have similar structures
(they both have two degrees of freedom) and a
comparable number of tuning parameters and in
this context the superior performance of the GPC
was a little surprising and would suggest that this
controller may offer some real benefit to the pro-
cess industry.

This work, while providing some insight into the
relative merits of the controllers is limited by the
fact that perfect modelling was assumed. It is an-
ticipated that if model uncertainty was incorpor-
ated and robust performance considered the results
might vary. The next stage of this work will indir-
ectly address this issue by evaluating the proposed
design and the three controllers on a number of
real–time systems, a level control problem, a flex-
ible link and a pilot scale pasteurisation unit.
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