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Abstract

This thesis attempts to determine whether advanced control algorithms offer any real

benefits to the process industry in terms of optimising single–input single output process

units. To establish this, an ideal PID controller, Two Degree of Freedom (2 DOF) PID

Controller and the Generalised Predictive Controller (GPC) are compared. A common

design philosophy is applied based on optimising performance subject to constraints on

robustness. Specifically, three different designs are examined: minimum IAE subject

to constraints on the gain and phase margin, minimum IAE subject to constraints on

the modulus margin and minimum IAE subject to constraints on the input sensitivity

function. Each of these optimisation problems are solved using a genetic algorithm.

The control algorithms and design methodologies are evaluated in simulation using a

range of thirteen benchmark systems common in the process industry. Subsequently, the

controllers and design strategies are evaluated on a real–time laboratory scale process

— a flexible link. The results indicate that the GPC algorithm performs notably better

than the other two controllers on the benchmark simulation study. However, when

the GPC was applied to the flexible link the benefits are not so obvious. The 2–DOF

PID controller achieves a really good trade–off between performance, robustness and

ease–of–tuning. These issues are undoubtedly one of the reasons for the success of the

structure in practice and the name Industrial PID controller is well deserved.

While each of the three proposed controller design techniques worked well, the design

based on the input sensitivity function performed best. This is especially noticeable on

the real–time system as the nature of the technique ensures that the high–frequency gain

of the controller is adequately shaped and resulting in good immunity to high–frequency

noise.

The novelty in this work primarily arises from the problem domain studied and the

proposed controller design methodologies. This is particularly true for the designs that

minimised the IAE subject to constraints on the modulus margin and input sensitivity

function. Additional novelty arises from the nature of the penalty functions to avoid

constraint violation and the modifications that were made to the canonical genetic al-

gorithm to reduce the computational time.
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Chapter 1

Introduction

PID feedback control remains a very popular control strategy in industrial processes.

According to Ȧström and Hägglund (2001) more than 90% of all control loops involve the

PID controller. The method is well understood and accepted by operating personnel and

control engineers due to the intuitive simplicity of the algorithm. Detailed knowledge

of a process is not required to successfully implement PID control, which is well suited

for many processes with different dynamics.

Besides the PID controller, many advanced control algorithms exist, for example pre-

dictive control. The predictive control philosophy was first advocated by Smith (1957)

though many variations now exist. To demonstrate the advantage of the predictive con-

trol methodology consider two control strategies. The first one uses only the current

value of the system output as feedback while the alternative strategy uses knowledge of

the future behaviour of the output to adjust the manipulated variable. Which control

strategy is expected to perform better? Clearly, the answer is the second control strat-

egy, as the necessary control action can be taken beforehand if the future behaviour

of the system can be predicted. This is the reason why much research has focused on

predictive control.

For the majority of control problems faced by industry, the omnipresent PID con-

troller provides sufficient capability. Nevertheless, the PID controller is still restricted in

its performance when controlling processes with long time delay, nonminimum phase be-

haviour or unusual dynamics. For more complex control problems, advanced techniques

11



1.1 Review of existing controller comparisons

such as Model Based Predictive Control (MBPC), also referred to as Model Predictive

Control (MPC), may achieve better control performance. Even though advanced tech-

niques may provide superior control, there are situations where they are not utilised

for different reasons. A major barrier to the successful implementation of advanced

controllers is complexity. In contrast to the PID controller, a model of a process has

to be obtained when the MBPC algorithm is implemented. Certainly, this limits its

popularity.

1.1 Review of existing controller comparisons

Over the past few decades, control engineers, (particularly academics) have devised a

bewildering range of control algorithms to overcome the limitations of the ideal PID

controller. Frequently, these proposals are justified based on superior simulation per-

formance with a PID controller. In many cases, these claims are unjustified because

the PID controller was poorly designed and tuned, e.g. using the Ziegler–Nichols tech-

nique (Wang and Kwok, 1994; Leonard, 1997; Neto and Embirucu, 2000; Visioli, 2000;

Burden et al., 2001; Sree et al., 2004). Thus, the contribution of this thesis is to com-

pare an appropriately designed and well–tuned PID controller with an advanced con-

troller algorithm. The motivation for this study is to determine whether the advanced

control algorithms can offer any real benefits to the process industry in terms of op-

timising Single–Input Single–Output (SISO) process units by, for example, maximising

throughput, minimising waste, minimising energy, etc. As a representative of the MBPC

paradigm, the Generalised Predictive Control (GPC) philosophy was evaluated.

A number of researchers have previously compared the PID and the GPC algorithms.

For example, Camacho and Bordons (1995, sec 8.2) applied GPC and a PI controller to

a solar power plant and found that the GPC performed faster and with less overshoot

than the PI controller. However, their results suffer from the bias mentioned above;

the authors note that “the results obtained by the PI controller, tuned by the Ziegler–

Nichols open–loop tuning rules, were very oscillatory, better results were obtained by

E.R. Velasco, after a long commissioning period where ≪optimal≫ PID parameters

were obtained”. Additional comparisons were performed by Owens and Warwick (1988),

12



1.1 Review of existing controller comparisons

Jolly and Bentsman (1993), Josi et al. (1997) and Burden et al. (2001). The first two of

these papers compare GPC with a PI(D) controller and the GPC algorithm is reported

to perform better: the former in simulation while an experimental continuous casting

process was used in the Jolly & Bentsman evaluation. Both reports are deficient in

that no details of the PI(D) tuning procedure were supplied. Though the comparison

performed by Josi et al. (1997) is more thorough, few details of the PID algorithm are

presented. The authors state that a cascade configuration with feedforward control and

gain scheduling was used, but the particulars of the design process were not provided.

This advanced classical controller is compared with a number of model–based schemes

on an experimental shell and tube heat exchanger. MBPC is rated as more favourable

than the classical technique but a process model–based control scheme that could cater

for the process non–linearities was found to be the most favourable.

A pilot–scale desalination process was used by Burden et al. (2001) to compare a

Ziegler–Nichols tuned PID controller with a constrained model–based predictive ap-

proach. Not surprisingly, these researchers reported that the PID approach “failed to

control the plant properly”. An additional GPC/PI comparison was performed by Fikar

and Draeger (1995). In this contribution both controllers were applied to a neutralisation

reactor and it was shown that the adaptive GPC is able to control the strongly nonlinear

plant and that it behaves much better than the “carefully tuned PI controller”. The

authors also pointed out that “the GPC parameters have been chosen with some care”.

Owens and Warwick (1988) also compared an adaptive GPC with a fixed “well–tuned”

PID controller. Such comparisons are disingenuous towards the PI(D) controller as the

non–linear adaptive structure is obviously going to outperform a fixed linear structure

on a strongly non–linear process or simulation.

In contrast to the foregoing comparisons, the work reported by Liu and Daley (1999a)

is noteworthy in that an advanced tuning strategy was applied to design the PID con-

troller. The authors compared a PID control scheme, a fixed parameter predictive con-

troller and an adaptive controller on a non–linear atmospheric test rig with a commer-

cial combustor. The PID controller was tuned using the Simplex optimisation method

to achieve a specified second–order response for the identified NOx model. Experi-

13



1.2 Problem statement

mental tests indicated that the adaptive algorithm outperformed both fixed algorithms

while the fixed predictive scheme achieved better tracking performance than the opti-

mal PID scheme. In the work conducted by O’Mahony and Downing (1999), the PID

controller was tuned using a pole–placement design technique advocated by Warwick

and Kang (1996). The authors demonstrated that, for a simple process (level control of

a laboratory–scale single tank system), the GPC offers few enhancements over the PID

controller.

Mohtadi and Clarke (1986) and O’Mahony and Downing (2000b) compared GPC,

the Linear Quadratic Gaussian (LQG) controller and the Cancellation Pole Placement

(CPP) controller. Each of these controllers has a 2–DOF structure. The authors noticed

that the GPC is relatively robust to mismodelling but it is quite sensitive to the effect of

high–frequency measurement noise. The CPP controller resulted in a smoother control

signal and was subsequently the controller of choice for the investigated application.

The GPC controller has also been compared with H∞ control (Ordys et al., 2000).

Both controllers were successfully applied to a laser scanner system. The authors found

that the H∞ controller was easier to tune and provided better performance while the

GPC was capable of removing overshoots.

1.2 Problem statement

The aim of this thesis is to investigate whether advanced control algorithms offer any

significant performance improvement for SISO loops relative to the ideal PID controller.

In contrast to much of the research outlined in the preceding paragraphs, this thesis

will endeavour to perform as fair a comparison as possible. This will be achieved by

applying a systematic controller design philosophy to both the PID and the advanced

control algorithm. This design philosophy is based on a review of existing approaches

which can be broadly classified as being based on (i) gain and phase margins and (ii)

optimising a sensitivity function criterion. Both approaches are investigated and the

optimisation is performed using a Genetic Algorithm (GA). In addition to the ideal

PID structure, the performance of a Two Degree of Freedom (2–DOF) PID controller

will also be evaluated. The inclusion of this algorithm is important as the ideal PID
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1.3 Organisation of the thesis

controller is rarely applied in industry and therefore the results will be more relevant to

the process industry. Furthermore, incorporating the 2–DOF PID controller removes a

source of bias — namely controller structure. As this controller and the GPC have two

degrees of freedom, the structures are similarly complex, the degrees of freedom are the

same and the number of tuning parameters are similar. Each of the three controllers will

be evaluated, in simulation, using thirteen benchmark processes (Ȧström and Hägglund,

2000; Ȧström et al., 1998) that are representative of typical process transfer functions.

Finally, a real–time evaluation will also be performed on a laboratory–scale flexible link

system.

1.3 Organisation of the thesis

The remainder of the thesis is organised as follows:

Chapter 1 introduces the reader to the research problem and provides an introduction

to the remainder of the thesis.

Chapter 2 describes the three controllers that are to be evaluated; the ideal PID

controller, the two degree of freedom PID controller and the Generalised Predictive

Controller. These controllers are widely documented in the literature and hence only

a brief description is presented. In addition, the GPC tuning parameters are analysed

to demonstrate the non–convex relationship between these parameters and classical

performance indices such as the integral of error criterion. The analysis is presented to

demonstrate the need for alternative optimisation routines, such as Genetic Algorithms.

Chapter 3 presents the Genetic Algorithm optimisation technique. The performance

criteria used in the controller evaluation are also described. First, the servo performance

is considered and definitions of typical performance metrics are given. In section 3.3

robustness criteria are presented. A review of existing tuning methods is provided in

section 3.4 and then the critical component of the optimisation technique, the objective

function, is detailed.
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1.3 Organisation of the thesis

Chapter 4 analyses the thirteen models and a brief description of the chosen sam-

pling period is presented. An overview of the optimisation environment and the control

algorithm implementation details are given. The selected controller structures are tuned

for each of the thirteen models using (i) a design that minimises the Integral of Absolute

Error (IAE) criterion subject to constraints on the gain and phase margin, and (ii) a

design that minimises the IAE criterion subject to constraints on a sensitivity function.

The results for each of the controller structures are summarised and discussed.

Chapter 5 evaluates the controllers and design philosophies on a real–time system.

The three previously mentioned controllers are designed and implemented on the real–

time system. The results of the real–time evaluation are presented and discussed.

Chapter 6 draws conclusions from the results and arguments presented in the thesis

and suggests possible directions for future research.

Appendix A lists results — controller coefficients and performance criteria — ob-

tained from the simulation evaluation for designs based on the gain and phase margin

criteria and the modulus margin.

Appendix B details the results obtained from the flexible link.
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Chapter 2

Controllers

In this chapter three controllers are described. The ideal PID controller, the two de-

gree of freedom PID controller (2–DOF PID) and the Generalised Predictive Controller

(GPC). These controllers are widely documented in the literature and hence only a brief

description of the control laws are presented here. In addition, the GPC tuning parame-

ters are analysed to demonstrate the non–convex relationship between these parameters

and classical performance indices such as the integral of error criterion. The analysis is

presented to demonstrate the need for alternative optimisation routines, such as Genetic

Algorithms.

2.1 PID controller

The terms P, I, D, may be interpreted as: P–proportional action which effects the

present, I–integral action (past), and D–derivative action (future control error). In

the case of pure proportional control, the control action is simply proportional to the

control error. The main function of integral action is to make sure that the process

output agrees with the set–point in steady state. The aim of the derivative action is to

improve closed–loop stability.

Figure 2.1 illustrates a block diagram representation of a typical feedback loop,

where Ud(s) is the disturbing control signal. The loop consists of a controller, C(s), and

a process G(s). The aim of the regulator is to minimise the error which is the difference

17



2.2 Two degree of freedom PID controller

Y (s)E(s) U(s)R(s)

D(s)

Ud(s)
G(s)C(s)

Figure 2.1 Feedback loop

between the set–point, R(s), and actual output, Y (s). In other words, the controller

calculates the signal U(s) such that E(s) is zero, despite the occurrence of disturbances

and/or changes to the set–point command.

The structure of the ideal PID controller is given by equation 2.1

U(s) = E(s)

(

Kp +
Ki

s
+ Kds

)

(2.1)

where E(s) is

E(s) = R(s) − Y (s) (2.2)

In equation 2.1, Kp, Ki and Kd are controller parameters.

2.2 Two degree of freedom PID controller

Equation 2.1 is known as a single degree of freedom control law because the controller

parameters may be optimised for servo performance or regulatory performance but not

both. Most industrial controllers are considerably more complex than the “textbook”

control law of equation 2.1 and a Two Degree of Freedom PID Controller, (2–DOF PID),

is given by equation 2.3

U(s) = Kp (b · R(s) − Y (s)) +
Ki

s
(R(s) − Y (s)) +

sKd (c · R(s) − Y (s))

1 + sKd

KpN

(2.3)

where N is the derivative filter and {b, c} are weightings that influence the set–point

response. Equation 2.3 may be restructured as

U(s) = R(s)F (s) − Y (s)H(s) (2.4)
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2.3 Model–Based Predictive Controller

R(s) U(s) Y (s)
F (s) G(s)

H(s)

Figure 2.2 Block diagram of 2–DOF PID controller

where F (s) and H(s) are defined by equations 2.5 and 2.6 respectively. This represen-

tation is illustrated in figure 2.2.

F (s) = Kpb +
Ki

s
+

sKd

1 + sKd

KpN

c (2.5)

H(s) = Kp +
Ki

s
+

sKd

1 + sKd

KpN

(2.6)

Clearly, the industrial PID structure corresponds to a 2–DOF control law. The

transfer function H(s) may be designed to yield optimal regulator performance while the

transfer function F (s) can be chosen to yield good servo performance. Note that Kp, Ki,

Kd and N appear in both of these transfer functions and hence it is not possible to specify

the regulator performance independently of the servo performance. Thus, the 2–DOF

PID controller is not a true 2–DOF controller. However, the parameters b and c may be

utilised to enhance the servo performance while not affecting the regulator performance.

For the ideal PID controller F (s) and H(s) are equal, given by equation 2.1.

2.3 Model–Based Predictive Controller

Model–Based Predictive Control (MBPC) is a field which has attracted much research

interest and attention. The idea of MBPC can be traced to the work of Kalman (1960a),

(1960b) when the Linear Quadratic Gaussian (LQG) concept was introduced. MBPC

has found wide spread applications in areas where it is economically feasible to develop

an accurate process model, e.g. in the petrochemical industry (Clarke, 1988; Grimble

and Ordys, 2001). These applications are typically described by non–linear, multi-

variable, constrained process models for which the MBPC philosophy is ideally suited.
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2.4 Control law of the GPC

While different control schemes with predictive capability are now available (Qin and

Badgwell, 2003), one popular class of predictive control is the Generalised Predictive

Control (GPC) introduced by Clarke et al. (1987a), (1987b). The initial derivation of

the GPC controller was for SISO systems; however Multi–Input Multi–Output (MIMO)

implementations (Camacho and Bordons, 1995, ch. 5), constrained versions, (Camacho,

1993; de Madrid et al., 1994) and also continuous–time versions (Demircioğlu, 1994;

Ronco et al., 1999) also exist.

As distinct from PID controllers, predictive controllers know the reference a priori,

therefore the system can react before changes occur, thus avoiding the effects of delay in

the process response. The methodology of predictive control is presented in figure 2.3.

The future outputs for an appointed prediction horizon, N2, also called the maximum

cost horizon, are predicted at each sample, t, using a model of the process. These

predicted outputs, y(t+k|t)1 for k = N1 . . . N2, depend on the known values up to instant

t and the future control signal, u(t + k|t), k = N1 − 1 . . . N2 − 1, which is calculated

by optimising a cost function in order to keep the output close to the set–point. The

control effort is included in the objective function and weighted by a parameter λ, see

equation 2.9. An explicit solution can be obtained if the criterion is quadratic, the

model is linear and there are no constraints; otherwise an iterative optimisation method

has to be used. The control signal, u(t|t), is sent to the process whilst the remaining

calculated control signals are rejected because at the next sampling instant y(t + 1) is

already known and the procedure is repeated with this new value and all the sequences

are brought up to date. Thus, u(t + 1|t + 1) is calculated (which in principle will be

different to u(t + 1|t) because of the new information available) using the most recent

information, (Camacho and Bordons, 1995).

2.4 Control law of the GPC

There are three major components in the design of a GPC:

• A model of the system to be controlled. This model is used to predict the system

1This notation refers the predicted value y at the instant t + k calculated at instant t.
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2.4 Control law of the GPC

r(t + k|t)

ŷ(t + k|t)

u(t + k|t)

Time

FuturePast

t − 2 t − 1 t + 1 t + Nu t + N2

Figure 2.3 Predictive control law

output over the prediction horizon. Consider the SISO Controlled AutoRegressive

and Integrated Moving Average (CARIMA) model of the form:

A(z−1)y(t) = B(z−1)u(t − 1) + Cd(z
−1)

ξ(t)

∆
(2.7)

where B is the numerator of a plant given by a polynomial in the backward shift

operator z−1. The order of the B polynomial is denoted nb.

A is the denominator of a plant given by a polynomial in the backward shift

operator z−1. The order of the A polynomial is denoted na.

ξ(t) is an uncorrelated random sequence

∆ is the difference operator defined as 1 − z−1.

To derive a j–step ahead predictor, the Diophantine equation 2.8 is solved.

1 = Ej(z
−1)A∆ + z−jFj(z

−1) (2.8)

where Ej and Fj are the corresponding controller polynomials with degrees j − 1

and na, respectively (Clarke et al., 1987a), (1987b).

• The various predictive control algorithms utilise different cost functions. The

general aim is that the future output should follow a pre–determined reference
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2.4 Control law of the GPC

signal, taking into account the control effort required to do so. The GPC cost

function is given by equation 2.9

J =

N2
∑

j=N1

[ŷ(t + j) − ω(t + j)]2 +

Nu
∑

j=1

λ(j) [∆u(t + j − 1)]2 (2.9)

where

N1 is the minimum cost horizon, subject to N1 ≤ N2

N2 is the maximum cost horizon

Nu is the control horizon, subject to Nu ≤ N2

λ is the control weighting sequence, subject to λ ≥ 0

ω is the future reference trajectory.

• Minimising the cost function yields the optimal control output. The minimisation

of equation 2.9, assuming no constraints on future controls, results in the projected

control increment vector given by equation 2.10

ũ = (GG + λI)−1GT (w − f) (2.10)

as will now be demonstrated.

Referring to equation 2.7, note that if the disturbance is modelled correctly i.e. if an

accurate estimate for the polynomial C(z−1), i.e. Ĉ(z−1) = C(z−1), is obtained, a mini-

mum variance predictor results, leading to a control law optimised for maximum quality.

Alternatively, an assumed model, T (z−1) = C(z−1), can lead to enhanced robustness.

This latter interpretation is the one generally adopted in the GPC literature, (Clarke

et al., 1987a), (1987b) and will also be adopted in this thesis.

Given the model 2.7 the objective is then to predict the future output ŷ(t + j) so

that corrective control action, u(t), can be invoked at time instant t. The problem then

relies on the optimal j–step ahead prediction of y(t):

ŷ(t + j) =
B

A
u(t + j − 1) +

T

A∆
ξ(t + j) (2.11)

Given j, A(z−1), B(z−1), {u(t)}t
t−nb

, the deterministic component

ŷ(t + j) =
B

A
u(t + j − 1) (2.12)
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2.4 Control law of the GPC

can be predicted exactly. In contrast, the additive stochastic disturbance consists of both

a discernible and unpredictable entity. For optimal predictions it is necessary to include

the observable component of the stochastic disturbance in the j–step ahead predictor.

To achieve this the rational function T/A∆ is split into a quotient and remainder by

application of the division algorithm as follows:

T

A∆
= Ej(z

−1) + z−j Fj

A∆
(2.13)

T = EjA∆(z−1) + z−jFj (2.14)

where Ej is a polynomial of degree j−1 and Fj is a polynomial of degree max{na, nt−1}

where nt is the order of the T polynomial. Multiplying 2.11 by EjA∆ and substituting

for EjA∆ from equation 2.14 yields

T (z−1)ŷ(t + j) = G′
j∆u(t + j − 1) + Fj ŷ(t) + EjTξ(t + j) (2.15)

ŷ(t + j) = G′
j∆uf(t + j − 1) + Fj ŷ

f(t) + Ejξ(t + j) (2.16)

In equation 2.16 the superscript f denotes quantities filtered by T . This j–step–ahead

predictor runs independently of the process and, for this precise reason, is not suited for

practical applications. To account for possible model mismatch or unmodelled distur-

bances it is necessary to incorporate information about the current state of the process

output. This may simply be achieved by replacing ŷf(t) in equation 2.16 with the actual

measured output y(t)/T = yf(t). Note also that since Ej is a polynomial of degree j−1

the noise component Ejξ(t + j) is comprised of terms that are all in the future and

therefore the optimal j–step ahead predictor is defined by

ŷ(t + j) = G′
j∆uf(t + j − 1) + Fjy

f(t) (2.17)

and the corresponding prediction error is –

ε(t) = Ejξ(t + j) (2.18)

The predictor defined by equation 2.17 may be combined with a quadratic cost which is

subsequently minimised to obtain the optimal future control sequence ũ = [∆u(t), ∆u(t+

1), . . .]. This optimisation is hindered by the fact that the first component on the right
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2.4 Control law of the GPC

hand side of equation 2.17 consists of both past and future terms of the manipulated

variable. To simplify the optimisation problem, it is thus necessary to split this compo-

nent into its constituent past, ∆u(t − 1), and future, ∆u(t + j − 1), components. This

may be achieved by noting that

G′
j∆uf(t + j − 1) =

G′
j

T
∆u(t + j − 1) (2.19)

and, by invoking the division algorithm, the term G′
j/T may be split into a quotient

and remainder as follows:
G′

j

T
= Gj + z−j Ḡj

T
(2.20)

G′
j = GjT + z−jḠj (2.21)

where the order of Gj is j − 1 and Ḡj is of degree max(nb, nt) − 1. Substituting for

G′
j in equation 2.17 yields the following, preferable, representation for the j–step ahead

predictor

ŷ(t + j) = Gj∆u(t + j − 1) + Ḡj∆uf(t − 1) + Fjy
f(t) (2.22)

This is now in the correct form in that the predicted outputs are directly related to future

but unknown control increments. In addition, the predictor can now be represented by

two terms; one depending entirely on future values of the manipulated variable; the

other on past values of the manipulated variable and past measured outputs.

Equation 2.22 represents a prediction of the output at a single time instant j. To

improve the reliability of the predictions the process output may be predicted over a

wider band. GPC considers a bank of predictions for which j varies from a small value

to a large value: these are known as the initial, N1, and final, N2, prediction horizons.

Consequently 2.22 may be restated as

ŷ(t + j) = Gj∆u(t + j − 1) + Ḡj∆uf(t − 1) + Fjy
f(t) N1 ≤ j ≤ N2 (2.23)

In key–vector form this representation is:

ŷ = Gũ + f ; f = Ḡ∆uf(t − 1) + Fyf(t) (2.24)

where the vectors are defined as:

ŷ = [ŷ(t + N1), . . . , ŷ(t + N2)]
T
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2.4 Control law of the GPC

ũ = [∆û(t + N1 − 1), . . . , ∆û(t + Nu − 1)]T

f = [f(t + N1), . . . , f(t + N2)]
T

and the matrix G is of dimension [N2 − N1 + 1 × Nu] and defined by

G =





























GN1

...

...

GN2





























=





























gN1−1 · · · g0 0

gN1

. . . g0

...
...

...

gN2−1 · · · gN2−NU





























(2.25)

The apparent inconsistencies in the indexing of the elements of the G matrix may be

resolved by noting that for each row, Gj, the first j − 1 elements, g0 . . . gj−1, remain

unchanged, consequently the polynomials Gj are defined as

GN1
= g0 + g1z

−1 + . . . + gN1−1z
N1−1

GN1+1 = g0 + g1z
−1 + · · ·+ gN1−1z

N1−1 + gN1
zN1

...

GN2
= g0 + g1z

−1 + · · ·+ gN1−1z
N1−1 + · · ·+ gN2−1z

N2−1

The GPC control law, equation 2.9, is arrived at by minimising a quadratic cost function

comprising the future values of the predicted errors plus some weighting on the future

control signals. Note that for N1 = 1, equation 2.9 is equivalent to minimising

J =
N2
∑

j=1

{

[ŷ(t + j) − w(t + j)]2 + λ(j) [∆u(t + j − 1)]2
}

(2.26)

subject to the equality constraint

∆u(t + j − 1) = 0 for Nu < j ≤ N2 (2.27)

Hence the incorporation of a control horizon Nu ≤ N2 is equivalent to placing infinite

weights i.e. λ(j) = ∞ , on the control signal increments for j > Nu. The cost 2.9 may

also be re–written in matrix notation as:

J = (ŷ − w)T (ŷ − w) + λũT ũ (2.28)
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2.4 Control law of the GPC

Using (2.24) yields the expanded cost

J = (Gũ + f − w)T (Gũ + f −w) + λũT ũ (2.29)

Multiplying through yields

J = ũT (GTG + λI)ũ + 2ũTGT (f −w) + (f − w)T (f − w) (2.30)

The minimum value of the cost 2.30 is obtained by differentiating w.r.t. ũ and setting

the result to zero i.e.

δJ

δũ
= 2(GTG + λI)ũ + 2GT (f − w) = 0 (2.31)

⇒ ũ = (GTG + λI)−1GT (w − f) (2.32)

Equation 2.32 gives the whole trajectory of future control increments and as such it is

an open–loop strategy. To close the loop, only the first element of ũ is extracted and

applied to the system and the optimisation recomputed at time instant t + 1. This

strategy is called the receding horizon principle and is one of the key features in the

MPC concept. Recall the first element of ũ is ∆u(t) so that the applied control signal

u(t) is defined by

u(t) = u(t − 1) + ∆u(t) (2.33)

For the purpose of closed–loop analysis it is possible to rearrange the GPC control law,

equation 2.32, into an equivalent linear control law. To achieve this it is convenient to

assume that the equivalent linear control law is causal i.e. no future set–point informa-

tion is incorporated. If the first row of the Nu ×N2 −N1 + 1 matrix (GTG + λI)−1GT

is denoted by

h = [ hN1
. . . hN2

] (2.34)

then the current control increment, ∆u(t), may be calculated from

∆u(t) =
[

hN1
. . . hN2

]

·











w(t) − ḠN1
∆uf(t − 1) − FN1

yf(t)
...

w(t) − ḠN2
∆uf(t − 1) − FN2

yf(t)











(2.35)

=

N2
∑

j=N1

hj · w(t) −

N2
∑

j=N1

hjḠj · ∆uf(t − 1)−

N2
∑

j=N1

hjFj · y
f(t) (2.36)
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2.5 GPC tuning parameters

Figure 2.4 Block diagram for equivalent linear form of GPC

Multiplying across by T (z−1) and re–arranging yields the following linear causal 2DOF

control law

R(z−1)∆u(t) = T1(z
−1)w(t) + S(z−1)y(t) (2.37)

where

R(z−1) = T + z−1
N2
∑

j=N1

hjḠj ; deg(R) = max(nt, nb) (2.38)

T1(z
−1) = T

N2
∑

j=N1

hj ; deg(T1) = nt (2.39)

S(z−1) =

N2
∑

j=N1

hjFj ; deg(S) = max(na, nt − N1) (2.40)

The corresponding block diagram is illustrated in figure 2.4.

2.5 GPC tuning parameters

In the ideal PID controller structure there are only three tuning parameters, Kp, Ki and

Kd. Tuning the GPC controller is more complex, as there are more tuning parameters

available. Some of them, like the T polynomial, (assuming perfect modelling) only

influence the disturbance rejection properties while other parameters, like the prediction

horizons, influence both the disturbance rejection and the robustness properties. In this

section the tunable parameters are briefly described. For a more complete study of

predictive controller tuning rules, see Rani and Unbehauen (1997).
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2.5 GPC tuning parameters
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Figure 2.5 Poles (×) and zeros (◦) when the system in equation 2.41 is sampled with

changing h

2.5.1 The sampling period, h

In the design of a digital controller it is necessary to choose a sampling period, denoted in

this thesis as h. If the sampling period too long control of the process is more difficult as

large deviations following a load disturbance may arise. However, short sampling periods

require a larger N2 and hence increase the load on the processor. Also, poles will move

towards the point z = −1 which may cause numerical problems. To demonstrate this,

consider the continuous–time transfer function

G(s) =
1

(s + 1) (s2 + s + 1)
(2.41)

Decreasing the sampling period over the range h = 1.28, 0.64, 0.32 . . . 0.02 moves the

poles towards -1, as illustrated in figure 2.5. When the transfer function, G(s), is sampled

using the zero–order hold method with h = 0.02 the coefficients of the discrete–time

transfer function G(z) decrease, which can cause numerical problems. The guidelines

for choosing the sampling period are presented in the following sections.

Settling time

The settling time, Ts, is defined as the time taken for the process step response to reach

and remain within 2% of its steady state value. The sampling period should be less then

28



2.5 GPC tuning parameters

1/10th of either the open or closed–loop settling time depending on which is shorter.

h = 0.1 · Ts (2.42)

For an oscillatory system this technique is inappropriate because, in general, the sam-

pling period will be too long. This technique is very simple and recommended by Iser-

mann (1981).

Rise time

Rise time, Tr, is either defined as the inverse of the largest slope of the step response or

the time taken for the response to pass from 10% to 90% of its steady state value, yss.

The sampling period can be obtained from equation 2.43

h =
Tr

Nr

(2.43)

where Nr is the number of sampling periods per rise time and Tr is either the open or

closed–loop rise time depending on which is shorter. For first order systems, Ȧström

(1990, sec. 3.7) recommends that Nr should be chosen between 4 − 10.

Analysis in the frequency domain — the damped frequency method

The sampling period can be related to the damped frequency of the closed–loop system.

Given the natural frequency, ωn, and the damping factor, ζ , the sampling period is

obtained from

h =
2π

Nωn

√

1 − ζ2
(2.44)

where the parameter N is the ratio of damped period to sampling period. It is reasonable

to choose N between 25 − 75, see Ȧström (1990, sec. 9.2).

Analysis in the frequency domain — the bandwidth method

Another technique presented by Ȧström (1990, sec. 2.6) is based on a frequency domain

analysis and uses the bandwidth of the closed–loop system. Illustration of the band-

width, ωb, is shown in figure 2.6 and is defined as the first frequency where the gain drops

below 70.79 percent (−3dB) of its d.c. value. Reasonable sampling frequencies are ten
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Figure 2.6 Presentation of bandwidth

to thirty times the bandwidth of the closed–loop system, as defined by equation 2.45

10ωb ≤ ωs ≤ 30ωb (2.45)

where ωs is the sampling frequency, defined as

ωs =
2π

h
(2.46)

Analysis in the frequency domain — the natural frequency method

Another technique presented by Ȧström (1990, sec. 9.2) states that the sampling period

should be chosen as shown in equation 2.47

ωnh = 0.2 − 0.6 (2.47)

where ωn is the desired natural frequency of the closed–loop system. These various

techniques are applied in chapter 4 to obtain discrete–time models for the GPC.

2.5.2 The minimum output horizon, N1

In general, it is recommended to set this parameter to 1 (Clarke et al., 1987a; Lambert,

1987). However for systems with dead time where the delay d is exactly known, there

is no benefit in setting N1 to be less than d since this results in superfluous calculations

because y(t + 1) cannot be affected by the first action u(t). If d is unknown or variable,
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2.5 GPC tuning parameters

then N1 can generally be set to 1 and the degree of B(z−1) increased to encompass all

possible values of d, (Clarke et al., 1987a).

2.5.3 The maximum output horizon, N2

If the plant has an initially negative–going nonminimum phase response, N2 should be

chosen so that the later positive–going output samples are included in the cost. In

discrete–time, this implies that N2 exceeds the degree of B(z−1). In practice, however,

a rather larger value of N2 is suggested,

d ≤ N2 ≤ ts (2.48)

where ts is the 95% settling time, (McIntosh et al., 1991; Garćıa and Morari, 1982).

2.5.4 The control horizon, Nu

For a simple plant (e.g. open–loop stable though with possible dead time and non-

minimum phase behaviour), a value Nu = 1 generally gives acceptable control, (Clarke

et al., 1987a). Small values of Nu have the added advantage that the computational

burden is reduced, which is particularly important in the adaptive case, when fast cal-

culations are necessary. This effect is evident from equation 2.25 where the dimension

of the matrix G is a function of Nu. The choice Nu = 1 also avoids numerical prob-

lems associated with inverting the Nu × Nu matrix (GTG + λI) which reduces to a

scalar and an inverse is guaranteed for λ > 0. In general, increasing Nu results in the

corresponding process output response becoming more active until a stage is reached

where any further increase in makes little difference, (Lambert, 1987). However, many

researchers (McIntosh et al., 1991) advocate using N2 rather than Nu to obtain a faster

closed–loop response as numerical conditioning and computational complexity are not

adversely affected. For more complex systems somewhat larger values of Nu have been

useful. For example, Clarke et al. (1987a) found that good control was achieved when

Nu is at least equal to the number of unstable or badly damped poles of the process

transfer function.
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2.5 GPC tuning parameters

2.5.5 The control weighting coefficient, λ

The control weighting coefficient can be used to penalise the control signal. It is partic-

ulary useful in negotiating the trade–off between minimising the error and minimising

energy requirements. A non–zero value of λ also ensures that the matrix (GTG + λI)

maintains full rank and thus improves the numerical properties of the GPC algorithm,

equation 2.10.

2.5.6 Effect of the T polynomial

The T polynomial, also known as the observer polynomial, is principally used to ne-

gotiate the trade–off between disturbance rejection and robustness. It should not be

selected on the basis of good robustness properties alone because of its influence on the

speed of disturbance rejection; slow observer poles are to be preferred for robustness

but fast poles for good disturbance rejection. Thus a trade–off between the two must

exist when designing an appropriate T polynomial, (Robinson and Clarke, 1991).

Optimality properties, such as minimum variance, are possible if the T polynomial

is equal to Cd(z
−1) of equation 2.7. However, accurate identification of Cd(z

−1) is

rare in practice (Robinson and Clarke, 1991) in which case T can be thought of as

a fixed design polynomial and can be used to represent prior knowledge about the

process noise. Predictors based on a fixed observer will not be optimal but a good

design generally provides other important properties such as robustness to unmodelled

dynamics. This latter interpretation is the one most commonly used in the GPC and has

been demonstrated by many researchers e.g. Mohtadi (1988), McIntosh et al. (1989) and

O’Mahony (2002). The latter researcher, for example, derives the following alternate

expression for the GPC prediction error

ε(t + j) =
A∆

T

[(

M −
B

A

)

u(t + j − 1)

]

(2.49)

where ε(t+j) = y(t+j)−ŷ(t+j) is the prediction error and M represents the true process

dynamics. Robustness to model uncertainty may be achieved by ensuring that the filter

A∆/T has a low–pass characteristic over the frequency range where model uncertainty

is significant; typically at high frequencies. This design philosophy effectively reduces
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Figure 2.7 Effect of the T polynomial on the IAEreg and the robustness criteria

the high–frequency gain of the GPC control law without affecting its low–frequency

properties (Mohtadi, 1988; Robinson and Clarke, 1991).

To demonstrate the influence of the T polynomial consider the process

G3(s) =
1

(s + 1)3
e−15s (2.50)

which is sampled every 0.7 seconds. The discrete–time system has a time delay of

21.4 samples hence, in accordance with section 2.5.2, the parameter N1 is set to 22.

The remaining GPC parameters were set by trial–and–error to achieve a satisfactory

closed–loop response. These parameter settings are

N1 = 22 N2 = 70 Nu = 1 λ = 1 · 10−6

T (z−1) = 1 − τ(z−1)
(2.51)

In figure 2.7 robustness criteria such as the gain margin, Am (equation 3.8), and the

phase margin, φm (equation 3.10) are plotted as a function of the observer pole, τ .

Both of these criteria are classical measures of robustness. The disturbance rejection

performance is also illustrated using the Integrated Absolute Error of the regulatory
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2.6 Gradient techniques versus stochastic methods

response, IAEreg, criterion. This is plotted as a function of τ assuming a step size of

0.01 and is clearly discontinuous, though it is not clear why this is the case.

All three criteria, IAEreg, Am and φm, are maximised for τ = −1 implying a robust

closed–loop response but with poor disturbance rejection properties. As τ → 0 the

disturbance rejection properties improve but the gain and phase margins decrease. Be-

yond τ = 0, the IAEreg remains approximately constant but both Am and φm become

distinctly non linear, with φm displaying distinct local minima.

2.6 Gradient techniques versus stochastic methods

It was necessary to select an appropriate optimisation routine to design the PID and

GPC controllers. Techniques which do not employ optimisation, e.g. tuning rules, are

usually easy to implement. However, they do not always work well and this motivated

the use of optimisation techniques. To demonstrate the complexity of the optimisation

problem, consider the following transfer functions.

G1(s) =
1

(s + 1)3
(2.52)

G5(s) =
1 − 2s

(s + 1)3
(2.53)

G10(s) =
100

(s + 10)2

(

1

s + 1
+

0.5

s + 0.05

)

(2.54)

Model G1(s): The solution space for the ideal PID and GPC controllers is presented in

figure C.1. Figure C.1(a) illustrates the Integrated Absolute Error of the servo response,

IAEservo, defined by equation 3.6 as a function of the parameters Kp, Ki and Kd = 6

for the PID controller. Likewise, figure C.1(b) illustrates the Modulus Margin, MM

(section 3.3.2), as a function of the same parameters. The solution space in figure C.1(a)

is convex and it is easy to find the minimum using gradient methods. However, an

objective function based on the MM is not convex. Furthermore, the graphical solution

becomes really non–convex if the derivative gain, Kd, is incorporated and gradient based

techniques could fall foul to local maxima. This was the motivation for considering

alternatives, such as genetic algorithms.
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2.6 Gradient techniques versus stochastic methods

Model G5(s): The methodology outlined in the previous paragraph was also applied

to the model G5(s) except that the gain Kd was set to 0.5. Figures C.2(a) and C.2(b)

present the surface for the PID controller. The IAE criterion yields a convex surface

while the MM criterion clearly results in a non–convex solution space. Figures C.3(a)

and C.3(b) illustrate the IAE criterion and the MM criterion as a function of the GPC

tuning parameters N1 and N2. Though not obvious from the graph figure C.3(a) is

non–convex. The global minimum occurs for N1 = 18, N2 = 19 and equals 3.24. A local

minimum occurs at N1 = 17, N2 = 19 and is 6% larger than the global minimum. These

coefficients do not correspond to any of the conventional GPC parameter settings, such

as recommended by McIntosh et al. (1989), and it would be difficult to determine this

solution based on trail and error. The MM criterion as a function of N1 and N2 yields a

more complex surface with at least four local maxima and further supports the rational

for using non–traditional optimisation techniques.

Model G10(s): Consider figure C.5, the minimum IAEservo = 0.25 for the PID con-

troller occurs for Kp = 11, Ki = 1 assuming a constant Kd = 1. However, the solution

space is quite flat, it is non-convex and the next local minimum occurs for Kp = 11,

Ki = 25, which is demonstrated in figure C.4.The solution for the maximum MM in

figure C.5(b) is non–convex and a local maximum occurs at Kp = 1 and Ki = 40. The

GPC IAEservo and the MM do not always decrease simultaneously. Examining C.6(a)

and C.6(b) it is evident that the minimum IAEservo and maximum value of MM coin-

cide for N1 = 1, N2 = 2. To demonstrate the non–convex surface in figure C.6(b) the

scale on the vertical axis is 0 to 0.2. However, a maximum of 0.88 occurs for N1 = 1,

N2 = 2.

These three simulation studies have illustrated that, in general, common optimisa-

tion techniques such as linear and quadratic programming have limited validity as the

majority of the solution surfaces are multimodal. These classical methods are suscep-

tible to local minima and a global solution may not be found. This statement is even

more applicable if the dimension of the search space is increased, e.g. if λ or the T poly-

nomial is included or combined criteria e.g. IAEservo + MM are used. For this reason,

a non–convex optimisation routine was applied to optimise the controller parameters.
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Chapter 3

Objective functions

The optimisation technique, Genetic Algorithms, is presented in this chapter. The per-

formance criteria used in the controller evaluation are described. First, the servo per-

formance is considered and definitions of typical performance metrics are given. Then,

in section 3.3, robustness criteria are presented. An overview of tuning methods is pro-

vided in section 3.4 and then the critical component of the optimisation technique, the

objective function, is detailed.

3.1 Genetic Algorithms

The Genetic Algorithms (GA) approach is an intuitive and mature search and optimi-

sation technique based on the principles of natural evolution and population genetics.

Typically, the GA starts with little or no knowledge of the correct solution and depends

entirely on responses from an interacting environment and its evolution operators to

arrive at good solutions. By dealing with several independent points, the GA samples

the search space in parallel and hence is less susceptible to converging to a suboptimal

solution. In this way, the GA has been shown to be capable of locating high perfor-

mance areas in complex domains without experiencing the difficulties associated with

high dimensionality or false optima, as may occur with gradient descent techniques.

Thus, the GA has been recognised as a powerful tool in many control applications. A

current study of GA theory was done by Schmitt (2001).
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Figure 3.1 Flow chart of the Genetic Algorithm

In this study a simple or canonical genetic algorithm, (Goldberg, 1989; Cao and Wu,

1999), was designed using functions from the Genetic Algorithm Toolbox 1, (Chipperfield

et al., 1994). A flow chart of the GA is shown in figure 3.1 and the following sections

summarise the principal components.

3.1.1 Generate initial population

In keeping with the flow chart shown in figure 3.1, the GA starts with an initial pop-

ulation which describes the possible set of solutions via binary chromosomes. A fixed

number of GA parameters has to be assigned at this stage in the code. For the results

presented in this thesis the following constants were assumed:

• Population size is set to 50. If the population size is small and the problem is

complex (non–convex) the GA has less genetic material to work with. Typically, a

population is composed of between 30 and 100 individuals, (Zalzala and Fleming,

1997, sec. 1.2.1).

• Number of variables depends on the controller to be designed. For the ideal PID

controller three variables are tuned, for the 2–DOF PID controller six variables

and for the GPC controller eight tuning variables are optimised.

• Resolution of tuning variables. In the GA, the resolution for each parameter is de-

scribed by the number of bits and the upper and lower bounds on that parameter.

1Published under the GNU General Public License, http://www.shef.ac.uk/∼gaipp/
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3.1 Genetic Algorithms

The number of bits is defined as:

Nbits = log2

(

Nup − Ndown

R
+ 1

)

(3.1)

where Nup defines the upper bound on the search area, Ndown the lower bound,

and R is the resolution. For the T (z−1) polynomial and the tuning variables of

the PID controllers the resolution was set to 0.001, for λ it was set to 0.1 while

for N1, N2 and Nu the resolution is unity.

• Coding. A binary representation of the chromosomes was used.

3.1.2 Ranking

Individuals are ranked according to their objective fitness values. The best individual is

ranked as 2, the worst as 0 and the remaining individuals were linearly ranked between

these two limits.

3.1.3 Selection

The individuals chosen for breeding are probabilistically selected based on their fitness or

ranking. Fitter individuals have a higher probability and are more likely to be selected.

However, less fit individuals may also be chosen. This ensures genetic variety. A common

selection strategy known as Stochastic Universal Sampling (SUS) was used. To make

sure that the best individuals proceed to the next generation, a generation gap, Ggap, is

set and is defined in equation 3.2.

Ggap =
Npop − Nbest

Npop

(3.2)

Npop is the number of individuals in the population and the number of best individuals

is denoted as Nbest. Typically 1 to 5 individuals are passed from the current generation

to the next unchanged. In this application, Nbest was set equal to five.

3.1.4 Crossover

The crossover operator recombines pairs of individuals with a given probability to pro-

duce the offspring. The crossover rate was set to 0.7, the default value according to Chip-
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Figure 3.3 Example of mutation

perfield et al. (1994). The simplest recombination strategy is to employ single point

crossover as illustrated in figure 3.2.

3.1.5 Mutation

The mutation operator introduces new genetic material by random changes of a single

bit. It works on each individual by alternating the value of a randomly selected bit

position, see figure 3.3. The mutation probability, Pm, is obtained from equation 3.3

Pm =
0.7

Lind

(3.3)

where Lind is the length of the chromosome structure. Typically, the probability for bit

mutation is in the range 0.001 to 0.01, see O’Mahony (2002).

3.1.6 Evaluation of the fitness function

The fitness function indicates how good a candidate solution is. Descriptions of the

chosen functions are detailed in section 3.5.
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Figure 3.4 Error of the best individuals

3.1.7 Terminating the GA

The GA runs in the loop as long as predefined user criteria are not achieved, see the

flow chart 3.1. The algorithm may be terminated if:

• a predefined maximum number of the generations has been reached

• the algorithm has converged, e.g. the cost function over a specified number of

generations has remain unchanged

• the GA has reached a prespecified minimum value of the cost function.

A combination of the first two criteria was used and the maximum number of iterations

was set to 200. As shown in figure 3.4(a), if the algorithm converged quickly then

the GA terminated prior to the predesigned value. In this case, the GA terminated

at the 69th generation. In most cases, the maximum number of generations was not

achieved. When the T polynomial was included for tuning, the problem became more

complex and a larger number of generations was required. An example of this is shown

in figure 3.4(b).

3.1.8 Cancellation of the output horizon

The genetic algorithm does not have information about the problem which it is going

to solve. The results are based on a continuous evaluation of the objective function.

It is necessary to assume that the output predictive horizon is greater than the initial
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3.2 Time domain performance criteria

predictive horizon, N1 ≤ N2. The GA works on a probabilistic method and hence there

is a possibility that N1 > N2, which is forbidden by the GPC control law. A simple “if”

statement was implemented in the GA to prevent this from occurring.

if N2<N1

N2=N1+N2-1

end

3.2 Time domain performance criteria

This section defines typical performance criteria that characterise the servo plus reg-

ulatory responses. The servo response refers to the closed–loop response, y(t), to an

applied unity set–point input, r(t), see figure 3.5. Based on this figure the following

criteria are considered.

Rise time, Tr, is either defined as the inverse of the largest slope of the step response

or the time taken for the response to go from 10% to 90% of its steady state value, yss.

Settling time, Ts, is the the time taken for a unit step response to reach and remain

within an absolute band of 0.02 units.

Time (sec)

A
m

p
li
tu

d
e

yssTs
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Figure 3.5 Typical response, y(t), to the step input r(t)
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Overshoot, yp, is the ratio of the difference between the first peak and the steady

state value of the step response.

yp =
ymax − yss

yss

(3.4)

In industrial control applications it is common to specify an overshoot of less than 10%.

In many situations it is desirable, however, to have an overdamped response with no

overshoot, (Ȧström and Hägglund, 1995).

Integrated Error, IE, is defined by equation 3.5

IE =

t1
∑

k=0

e(k) (3.5)

where e(k) is the control error and t1 is the simulation end time (steady state error equals

zero). The IE criterion is a natural choice for control of quality variables for a process

which is characterised by an overdamped response. This criterion can be misleading

however since, for example, it will be zero for an oscillatory system with no damping.

Integrated Absolute Error, IAE, is another very common performance criterion.

The IAE of the servo response is given by equation 3.6

IAEservo =

t1
∑

k=0

|e(k)| (3.6)

Regulator response is defined as the closed–loop response, Y (s), to a disturbance

input, D(s), as illustrated by the block diagram in figure 2.1. A typical response is

presented in figure 3.6. In this case the following criteria, presented by Ȧström (1987),

are considered:

Overshoot after disturbance, yd, is defined as yd = −e2

e1
, where the peaks e1 and

e2 are presented in figure 3.6.

Disturbance settling time, Trd, is the time taken for a unit step disturbance re-

sponse to reach and remain within an absolute band of 0.02 units.
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Figure 3.6 Typical response of control error to step or impulse disturbance

Integrated Absolute Error, IAE, of the regulator response is given by equation 3.7

IAEreg =

t1
∑

k=0

|−y(k)| (3.7)

3.3 Metrics to measure robustness

In practice, models are not perfect and a discrepancy will always exist between the

identified model and the actual plant. For the controller, which is designed using the

identified model, to be successful on the actual plant, the controller must be robust

to process–model mismatch. Standard measures of robustness are presented in the

following sections.

3.3.1 Gain and phase margin specification

Gain margin, Am, is defined as the factor by which the gain must change to force

the closed–loop system to marginal stability, (Phillips and Nagle, 1990; Ȧström and

Hägglund, 1995).

Am =
1

| L(iωu) |
(3.8)

where the ultimate frequency, ωu, is the frequency at which L(iωu) = −π. L is defined

as an open–loop transfer function described by equation 3.9.

L(s) = C(s)G(s) (3.9)
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3.3 Metrics to measure robustness

Phase margin, φm, is defined as the angle through which the Nyquist diagram must

be rotated so that the diagram intersects the (−1, i0) point, (Phillips and Nagle, 1990;

Ȧström and Hägglund, 1995).

φm = π + arg (L(iωc)) (3.10)

The gain cross–over frequency, ωc, is the frequency where the Nyquist plot intersects the

unit circle |L(iω)| = 1. Typical values of φm range from 30◦ to 60◦. The gain and phase

margin definitions for the discrete–time system and for the continuous–time system are

exactly the same.

3.3.2 Modulus margin, MM

The Modulus Margin, MM , is defined by Landau et al. (1998) as the radius of the circle

centred on the critical point (−1, i0) and tangent to the Nyquist plot of the open–loop

transfer function, L(s). Recommended practical values for the modulus margin are

MM ≥ 0.5(−6dB). The inverse of the MM corresponds to the maximum value of the

sensitivity function S(s) on the Bode plot and is denoted by Ms.

Ms = max
0≤ω≤∞

(S(iω)) (3.11)

where

S(s) =
1

1 + C(s)G(s)
(3.12)

According to Ȧström and Hägglund (1995), reasonable values of Ms are in the range 1.3

(robust tuning) to 2.0 (more aggressive tuning).

3.3.3 Resonance peak of the closed–loop system Mp

The value of Mp is the size of the resonance peak of the closed–loop system obtained

from a frequency domain analysis of the complementary sensitivity function, T , detailed

in equation 3.14.

Mp = max
0≤ω≤∞

(T (iω)) (3.13)

T (s) =
C(s)G(s)

1 + C(s)G(s)
(3.14)

Typical values of Mp are in the range of 1.0–1.5, (Ȧström et al., 1998).
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3.3.4 Delay margin, DM

Delay margin, DM , represents the additional time delay that the closed–loop system

can tolerate prior to instability. The phase lag introduced by a pure time delay, Td, is

∠φ(ω) = ωTd (3.15)

Therefore, to convert the phase margin to a delay margin, i.e. to compute the additional

delay which will lead to instability, equation 3.16 is used.

DM =

∣

∣

∣

∣

φm

ωc

∣

∣

∣

∣

(3.16)

If the Nyquist plot intercepts the unit circle at several frequencies, ωi
c, characterised by

corresponding phase margins of φmi, the delay margin is defined by

DM = min
i

∣

∣

∣

∣

φmi

ωi
c

∣

∣

∣

∣

(3.17)

For adequate robustness, the delay margin should be greater than one sampling period

for discrete–time systems, (Landau et al., 1998, sec. 8.3.1).

3.4 An overview of robust tuning techniques

Regardless of the design technique used, controllers are always designed based on in-

formation about the dynamic behaviour of a process. The model accuracy varies but

is never perfect. Furthermore, the behaviour of the plant itself changes with time and

these changes are rarely captured in the model. It is most desirable that the controller

be insensitive to this kind of model uncertainty, i.e. the controller should be robust. In

addition, the design must satisfy some minimum performance specifications, e.g.

• good disturbance rejection,

• adequate set–point following.

Traditionally, PID controllers have largely been designed from a performance point of

view, (Ȧström et al., 1993; O’Dwyer, 2000a,b,c). More recently, the importance of

robustness has been realised and robust PID controllers may now be achieved using a

myriad of approaches. In keeping with Yaniv and Nagurka (2004), this thesis will collate

robust PID controllers into two categories:
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• techniques utilising gain and phase margin specifications,

• techniques employing sensitivity functions.

3.4.1 Gain and phase margin specifications

The design of PID controllers to satisfy some gain and phase margin specifications may

be achieved via the use of tuning rules, graphical techniques and, recently, techniques

based on Artificial Intelligence (AI) — numerical methods. Some of the techniques

presented in this section overlap. For example: crossover frequencies may be obtained

using numerical optimisation and subsequently a tuning rule is applied. In this thesis,

these cases are categorised as tuning rule techniques, i.e. the classification is based on

the manner in which the controller parameters are obtained. The following discussion is

not restricted to the ideal and 2–DOF PID structures that are considered in this thesis

but attempts to provide the reader with a general overview of design philosophies that

incorporate robustness. Where appropriate, the specific PID algorithm relevant to the

design is mentioned.

Techniques based on tuning rules

There are a multitude of PID controller design techniques based on the use of tuning

rules and the interested reader is referred to O’Dwyer (2003) for an excellent overview.

This section will concentrate only on tuning rules that incorporate gain and phase margin

criteria in the design and will provide a brief overview of these techniques. Numerous

PID controller designs based on these criteria exist, for example, the proposals by Ȧström

and Hägglund (1984), Franklin et al. (1986), Ogata (1990), Ho et al. (1995) and Cluett

and Wang (1997). The disadvantage of some of these methods is that the transfer

function of the controlled process is restricted to a First Order Lag Plus time Delay

(FOLPD) model. As reported in Shafiei and Shenton (1997), some of these methods

may be unable to render solutions for all gain and phase margin requirements and

sometimes the controllers do not perform satisfactorily. Fung et al. (1998) proposed a

design method for the ideal PI controllers which can achieve user–specified gain and

phase margins. These authors derive equations that define the boundaries for the ideal
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parallel PID algorithm given a specified gain and phase margin. These equations are

then plotted to define the {Kp Ki Kd} parameter plane corresponding to the required

level of stability margins. Points on the boundaries of the regions can be associated

with the phase and gain crossover frequencies and hence allow direct consideration of

bandwidth requirements. Some guidance on transient performance optimisation is also

provided incorporate gain and phase margin (GPM).

Ho et al. (1998b) proposed another GPM method which has the advantage that

it can be applied to high order systems with time delay. This paper also presented

other tuning formulae for the ideal PID controller that can satisfy both robustness

and optimum performance requirements in terms of the Integral Square Error (ISE)

criterion. Ho et al. (1999) studied the relationship between the performance index ISE,

gain margin, phase margin and gave recommendations for improving the phase margin

and performance of the ideal PI and PID structures. The authors discussed the classic

trade–off problem: phase margin versus performance and demonstrated that for a given

gain margin there is a phase margin that minimises the ISE. PID tuning rules to achieve

a user specified gain margin for open–loop unstable processes were presented by Ho and

Xu (1998). Another technique which achieves a desired gain and phase margin was

presented by Wang et al. (1999). This method can yield an exact solution for a general

linear process and is based on the utilisation of the frequency response of the process.

The proportional gain of the controller is calculated using the critical point information

and the desired gain margin. The phase margin is then used to calculate the integral

and derivative gains. An advantage of this method is that the closed–loop bandwidth

can be specified as a desired factor of the open–loop bandwidth. A quantitative robust

stability criterion that is based on the open–loop frequency response was developed

by Wang et al. (2002) for the parallel PID controller structure. The authors proposed a

tuning algorithm which guarantees the required gain and phase margins of the closed–

loop system for a second order plant plus time delay and applied the technique to an

uncertain system.

An autotuning procedure for PID controllers in terms of gain and phase margin

procedure was presented by Zhuang and Atherton (1993). The least squares fit technique
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was used to obtain formulae and based on these formula, the controller gains were

calculated for a FOLPD model. The tuning technique is not suitable for systems with

a long dead time.

Graphical methods

Relative to tuning rules, robust PID controller design based on graphical techniques has

received scant attention. To the author’s knowledge, only two significant contributions

exist. Shafiei and Shenton (1997) proposed a technique, based on a parallel PI/PD/PID

controller formulation, that allows a direct design for simultaneous minimum phase and

gain margins as well as transient performance and maximum bandwidth specifications

and thus may be regarded as a more powerful alternative to the approach of Ȧström and

Hägglund (1984), Ho et al. (1995). By solving given equations, the user is able to plot

a two dimensional parameter plane and, based on that, choose the desired controller

parameters. The technique is based on previous work, Shatiei and Shenton (1994).

The method introduced by Huang and Wang (2001) is based on searching the pa-

rameter area for the controller gains to achieve a compromise between good tracking

performance and system robustness with respect to external disturbances. This method

can be applied to stable and unstable systems of arbitrary order and the controller design

has considerable flexibility. One of the advantages is that exact gain and phase margin

specifications may be achieved. Again, the authors assume that the PID controller can

be described by the ideal parallel or non–interacting algorithm.

Numerical methods

An improvement of the GPM proposed by Ho et al. (1995) was achieved via a fuzzy

neural network approach presented by Chu and Teng (1999). According to the authors,

the proposed Fuzzy Neural controller based on Gain and Phase margin specifications

(FNGP) gives better performance than the GPM even when the plant is first–order

with time delay. A fuzzy neural approach, proposed by Lee and Teng (2002), is based

on Adaptive Network using Fuzzy Interference System (ANFIS). Advantages of this

neural network design approach are that the trained neural network automatically tunes
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the parameters of an ideal parallel PID controller for different gain and phase margin

specifications so that neither numerical methods nor graphical methods are required.

An alternative method to achieve specified gain and phase margins using AI methods,

based on the Direct Nyquist Array (DNA) was presented by Ho et al. (1998a).

The tuning formulation of Ho et al. (1995) was applied to a parallel structure of fuzzy

PID control systems by Xu et al. (2000). A comparison with the ideal PID controller

was presented via a second order nonlinear plant with time delay — two tanks coupled

by an orifice. The authors demonstrated, via theoretical and experimental results, that

the fuzzy PID controller has the nonlinear properties of higher controller gains when the

system is away from its steady state and a lower control profile when set–point changes

occur. As a result, these nonlinear properties provide the fuzzy PID controller with the

ability to outperform the conventional PID control system.

Liu and Daley (1999b) proposed an alternative technique for satisfying gain and

phase margin specifications for the ideal PID controller structure. These authors con-

sidered the controller tuning as an optimisation problem designed to satisfy a set of

frequency–domain performance requirements: gain margin, phase margin, crossover fre-

quency and steady–state error and solved the problem using min–max optimisation (Gill

et al., 1981) and the method of inequalities, (Zakian and Al-Naib, 1973). The proposed

design was demonstrated via an application to a rotary hydraulic system. Its perfor-

mance was compared with six alternative PID tuning rules — none of which included

gain and phase margin criteria — and significantly improved dynamic performance was

achieved.

Since the early 1990’s, Genetic Algorithms have been used to determine the PID

controller parameters. Initially, simple cost functions, e.g. integral of squared error,

were specified (Porter and Jones, 1992; Hwang and Thompson, 1993; Porter and Hicks,

1993; Wang and Kwok, 1994; Porter and Hicks, 1995; Ota and Omatu, 1996; Cheng and

Hwang, 1998; Rensburg et al., 1998; Mitsukura et al., 1999; O’Mahony et al., 2000).

More recently the versatility of the GA approach has been exploited and more com-

plex cost functions incorporating robustness constraints have been proposed. However,

the number of GA–based designs for PID controllers using gain and phase margins is
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still quite limited. One such gain and phase margin optimisation problem was proposed

by Jones et al. (1996). A frequency–domain model of the process was generated by iden-

tifying several points below, at, and above the crossover frequency. This model provided

estimates of the actual gain and phase margins, denoted GAm and Gφm, respectively.

The following cost function was specified (GAm−DAm)2+(Gφm−Dφm)2 where DAm = 2

and Dφm = 45◦ represent the desired gain and phase margins respectively. This cost

function was optimised using a simple binary coded genetic algorithm with a popula-

tion size of 100 individuals and 1000 generations. The proposal was demonstrated on a

laboratory–scale airflow temperature control system.

Mitsukura et al. (1997) proposed a somewhat convoluted approach for tuning the

ideal velocity–based discrete PID controller using genetic algorithms. In their approach

the authors’ equate the discrete PID algorithm with the generalised minimum variance

control law (Clarke and Gawthrop, 1979) assuming a second–order discrete–time process

model. They then derive abstract tuning parameters; λ which is related to stability and,

by extension, the gain and phase margin, σ which is related to the rise–time and δ a

parameter related to the damping factor. These parameters are specified by the user and

the PID coefficients are optimised to achieve the specification. The design procedure is

closely related to the traditional pole–placement philosophy but suffers from a lack of

intuitiveness.

3.4.2 Techniques based on sensitivity functions

Though the use of sensitivity functions for controller design is topical, the idea is not

new. The concept was popularised in the PID literature by Shinskey (1990) who outlined

a series of controller evaluation tests based on optimal load disturbance rejection and

measured by sensitivity constraints. This idea was developed by Persson (1992), Persson

and Ȧström (1992), who applied a constraint to Ms. The use of both Ms and Mp as

design parameters was suggested by Schei (1994).

Modern techniques are extensions of these ideas where robustness is specified as a

sensitivity constraint and performance optimised through the integral of error criterion.

The combined optimisation problem is non trivial and numerical approaches are gener-
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ally applied to realise the PI/PID controller gains. A few graphical solutions have also

been suggested.

Numerical methods

A novel and effective PI controller tuning technique based on non–convex optimisation

was reported by Ȧström et al. (1998). The authors described a numerical method based

on the optimisation of load disturbance rejection with constraints on the sensitivity

function and weighting of the set–point response. The paper also demonstrated that the

design problem of minimising the IE of the load disturbance is equivalent to maximising

the integral gain, Ki. The tuning was restricted to the PI algorithm of equation 3.18

U(s) = Kp (b · R(s) − Y (s)) +
Ki

s
(R(s) − Y (s)) (3.18)

where b is a controller parameter. An advantage of this numerical method is that it

is applicable to a wide range of systems and robustness is easily specified through the

criteria Ms and Mp.

Another design approach to solve the non–convex optimisation problem of Ȧström

et al. (1998) was presented by Hwang and Hsiao (2002). The approach is based on re-

garding the equality constraint set on the controller gain parameters as a two–dimensional

value set in the complex plane and uses the notion of principal points to characterise its

boundary. The method can handle sensitivity and complementary sensitivity constraints

simultaneously without using an iterative procedure. As distinct from the method pre-

sented by Ȧström et al. (1998) the authors considered the ideal PI and the ideal PID

controller. The method leads to a less conservative design approach than that proposed

by Ȧström et al. (1998) in which both constraints are combined into a single and more

conservative constraint.

In Wang and Shao (2000), robustness was achieved by the parameter λ

1

λ
= max

0≤ω<∞
|Re[L(jω)]| (3.19)

which specified the shape of the Nyquist curve. The loop transfer function is defined by

equation 3.9 and C(s) is the ideal parallel PI controller, equation 3.20.

U(s) = E(s)

{

Kp +
Ki

s

}

(3.20)
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In addition to the robustness parameter λ, the design minimised the integrated control

error to obtain good performance. These authors gave a number of simulation examples

for the PI controller which achieved high performance over a wide range of linear self–

regulating processes.

The combined use of genetic/evolutionary algorithms and sensitivity functions be-

gan to appear from the late 1990’s onwards. For example, Poulin and Pomerleau (1997)

presented a tuning method for PID controllers based on the contours of the Nichols

chart and Mp. The approach offers the possibility of simultaneously handling (1) the

maximum peak overshoot, (2) a lower bound on the amplitude and phase margins, such

that minimum stability margins are guaranteed, and (3) approximate specifications on

the closed–loop bandwidth. The method can be applied to almost all types of processes.

Subsequently, Poulin and Pomerleau (1999) developed a PI design methodology for inte-

grating processes that bounds the maximum peak resonance of the closed–loop transfer

function. The peak resonance constraint is equivalent to bounding the complementary

sensitivity which can be converted to bounding the sensitivity function.

Similarly Lieslehto (2001) chose to incorporate multiple criteria, closed–loop band-

width, resonance peak Mp, maximum sensitivity Ms as well as the traditional gain and

phase margin criteria into his GA formulation. While multiple criteria are considered

the cost function reduces to a single–objective function by considering only the worst–

case offender for each candidate solution. This GA optimisation was performed on a

two–degree of freedom PID algorithm with set–point weighting and first–order filter and

demonstrated via a simulation example.

In contrast, Shen (2001) chose to use the dominant pole assignment method proposed

by Ȧström and Hägglund (1995) as the basis for his GA-based tuning approach. In the

dominant pole assignment method the dominant poles of the system are assigned such

that the integration of the error caused by a step load disturbance is minimised subject to

a constraint on the maximum sensitivity. Set–point weighing is then used to optimise the

set–point response. Shen (2001) chose to combine these steps into a single optimisation

function J = Js + Jd, where Js is the IAE due to a set–point change and Jd is the IAE

due to a disturbance change. This function is minimised subject to the constraints of
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(i) stability and (ii) 1.4 ≤ Ms ≤ 2.0. A two degree of freedom PID structure (an ideal

PID controller with set–point weighting) was utilised and a simulation example is used

to demonstrate the improved performance over the tuning rules proposed by Ȧström

and Hägglund.

Robust designs are frequently based on the H∞ norm of some suitably chosen sen-

sitivity function. Chen et al. (1995) chose to tune the PID coefficients by solving a

mixed H2/H∞ optimisation problem via genetic algorithms. The authors proposed to

solve the problem in three stages, effectively reducing the multi–objective problem to a

single–objective problem. In the first stage, the Routh–Hurwitz criterion is applied to

determine the stability domain for the three PID parameters. Secondly, a subset of the

stability domain in the PID parameter space from step one is specified so that the H∞

constraint (robustness constraint or disturbance attenuation constraint) is satisfied. In

the third step, the design problem becomes, in the subset domain of the H∞ constraint

of step 2, optimise the H2 tracking performance. The authors focused on the ideal non–

interacting PID algorithm and a more efficient algorithm was subsequently proposed by

Chen and Cheng (1998). The performance of this mixed H2/H∞ formulation was evalu-

ated by Lagunas et al. (2003) on a pilot–scale DC servomotor. A similar H2/H∞ design

philosophy was adopted by de Moura Oliveira and Jones (2000) where the H2 tracking

performance was optimised subject to a H∞ norm on the sensitivity function i.e. the

ISE tracking was optimised subject to a constraint on Ms. The primary contribution

of this research was to present a modified GA which preserves genetic diversity. The

authors demonstrate the effectiveness of the proposal via two simulation examples; one

SISO and one MIMO.

True multi–objective GA approaches to the mixed H2/H∞ PID optimisation problem

have been proposed by Takahashi et al. (1997), Kawabe and Tagami (1997), Krohling

et al. (1997), Krohling and Rey (2001) Herreros et al. (2002), amongst others. For exam-

ple, Takahashi et al. (1997) consider a cost function that consists of four objectives: op-

timisation of (1) the H2 and (2) the H∞ norm from reference to output transfer function;

(3) the H2 and (4) the H∞ norm from the disturbance to output transfer function. In ad-

dition these authors consider two constraints (i) a maximum constraint on the absolute
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values of the closed–loop poles motivated by the recognition that optimal controllers

may realise very slow responses; (ii) maximum values on the controller gains. In addi-

tion it was assumed that the process structure was assumed known but with uncertain

parameters e.g. the uncertainty was defined as a convex polytope. To solve this prob-

lem the min-max formulation was adopted e.g. the cost function was minimised for the

worst-case model uncertainty. The paper focused on deriving a new gradient-based op-

timisation algorithm to solve the problem. A multi–objective GA using pareto–optimal

solutions is then used to validate the results of the approximate gradient technique. The

authors note that the gradient–based algorithm was considerable more efficient — exe-

cution time was between 30 to 450 times faster. Herreros et al. (2000, 2002) proposed a

generic multi–objective mixed H2/H∞ cost function which could incorporate set–point

following, rejection of load disturbances, robustness with respect to model uncertainties,

attenuation of measurement noise and actuator limitations. The authors also consider a

stability constraint and assume a generic PID controller structure. Like Takahashi et al.

(1997) the possibly competitive nature of the multiple objectives is negotiated via the

use of pareto–optimal solutions. A relatively advanced genetic algorithm is proposed

and the authors focus on comparing their multiobjective robust control design algorithm

with alternative multiobjective GA proposals and with formal Linear Matrix Inequality

(LMI) based approaches.

Similarly, Kawabe and Tagami (1997) assume that the process contains parametric

uncertainty and can be modelled as a polytopic system. The proposal focuses on de-

signing an optimal 2–DOF PID controller to minimise the H2 norm of (i) the regulator

and (ii) the servo performance. Rather than considering pareto–optimal solutions as in

Takahashi et al. (1997) this proposal reformulates the problem in terms of Linear Matrix

Inequalities and subsequently applies a GA to solve this set of inequalities. The paper

concludes with some simulation examples.

Krohling et al. (1997) as well as Krohling and Rey (2001) consider the same problem

formulation as Chen et al. (1995), i.e. they optimise the H2 tracking performance subject

to constraints on stability and a H∞ norm that encapsulates the disturbance rejection

capability. Both norms are optimised by separate genetic algorithms with periodic
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information exchange to ensure the “true” optimum is achieved. However, since the

cost essentially consists of a single objective with a constraint it is not clear why two

GA are required and the advantages of the proposal, if any, are not detailed. A design

example, utilising the ideal parallel PID structure, completes the paper.

3.4.3 Resume of tuning techniques

It is clear from the previous sections that robust controller design laws may be realised

through the use of gain and phase margin criteria and/or by constraining the open

or closed–loop sensitivity functions in some fashion. It is evident from this review

that the majority of the techniques outlined in section 3.4.1 are unsuitable for the

purposes of this research because the design cannot be readily applied to the Generalised

Predictive Controller, i.e. a tuning rule for PI/PID controller will not realise the GPC

parameters. The possible exceptions are the designs proposed by Liu and Daley (1999b)

and Jones et al. (1996). In the former, the authors, Liu & Daley, apply numerical

optimisation (min–max optimisation) to determine optimum controller parameters and

a similar procedure will be applied in this study but the numerical optimisation will be

performed by a GA and the cost function will minimise and IAE performance criterion

subject to constraints on the gain and phase margin. In contrast, Jones et al. (1996)

only considered optimising the gain and phase margins. It is the author’s experience

that incorporating a transient performance specification is useful as it helps to direct the

GA and results in quicker convergence. In addition, formulating the problem to achieve

a single desired value of gain and phase margin is too restrictive and may potentially

be mutually exclusive. A more realistic objective is to specify a region within which the

gain and phase is acceptable as is advocated in this thesis and detailed presently.

The majority of the techniques discussed in section 3.4.2 can be applied to both the

PID controller and the GPC since, in general, a numerical optimisation is performed.

The problem is then to determine the most appropriate cost function, i.e. what com-

bination of constraints, sensitivity functions, and integral of error criteria will yield the

most suitable/practical controller design?

The following section describes the proposed tuning strategies based on the gain and
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phase margin, 3.5.1, the modulus margin, 3.5.2, and the input sensitivity function, 3.5.3.

3.5 Objective functions

As mentioned in section 3.4.1, the first of the proposed designs involves the use of gain

and phase margin specifications. This section describes how this design was achieved

by first considering typical requirements for both the gain and the phase margin. For

example, Seborg et al. (1989) specified that typical minimum requirements are a gain

margin of Am > 4.6dB and a phase margin of φm > 30◦. The authors Ho et al. (1995),

Fung et al. (1998), Wang et al. (1999) assumed a Am = 9.5dB and a φm = 60◦ in their

controller design while Ȧström and Hägglund (1995, p. 126) recommend that the gain

margin should be in the range 6dB − 14dB and that the phase margin should be in the

range 30◦− 60◦. In this thesis, the minimum gain margin was chosen as Am = 6dB and

the phase margin φm = 45◦.

3.5.1 Gain and phase margin specifications

The objective function in the controller design was then to minimise the IAE subject to

the constraints that the gain margin was greater than 6dB and the phase margin was

greater than 45◦. These constraints were implemented as follows. First consider the
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Figure 3.8 Penalty function for the GPM method

standard Gaussian function

y = e−x2

(3.21)

which is illustrated in figure 3.7. If this function is modified by appropriate truncation

and scaling, it is possible to generate curves such as those illustrated in figure 3.8.

Consider figure 3.8(a): if the gain margin is less than 6dB then the contribution by this

function to the overall cost is large. Hence, the cost function will be heavily weighted,

regardless of the IAE, while if the gain margin is greater than 6dB the contribution

is constant at unity. Mathematically, these curves are represented by equations 3.22

and 3.23.

λAm =







10 − 9e−2(Am−Am)
2

∀ Am < Am

1 ∀ Am ≥ Am

(3.22)

λφm =







10 − 9e−0.0025(φm−φm)
2

∀ φm < φm

1 ∀ φm ≥ φm

(3.23)

where Am is the measured gain margin, Am is the specified minimum value, both ex-

pressed as absolute values, φm is the measured phase margin (in degrees) and φm is the

specified minimum value.

Clearly, provided the robustness constraints are satisfied, these objective functions

reduce to minimising the IAE. The individual objective functions are defined by

JPID = min
Kp,Ki,Kd

{IAEboth · λAm · λφm} (3.24)

J2−DOF = min
Kp,Ki,Kd,b,c,N

{IAEboth · λAm · λφm} (3.25)
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JGPC = min
N1,N2,Nu,λ,T (z−1)

{IAEboth · λAm · λφm} (3.26)

where the IAE of the servo and regulatory response is given by equation 3.27

IAEboth =

t0−1
∑

k=0

|e(k)| +

t1
∑

k=t0

|e(k)| (3.27)

t0 is the time at which a unit step disturbance, D(s), is applied (see figure 2.1) and t1

is the simulation end time (steady state error equals zero). Therefore, the IAE servo

is calculated over the period 0 < t < t0, and the IAE regulator is calculated over the

period t0 ≤ t ≤ t1.

3.5.2 Modulus margin

A variety of sensitivity functions have been proposed to aid the design of robust control

systems. Landau et al. (1998) reported that a good robustness measure is the modulus

margin, MM , described in section 3.3.2. These authors recommended practical values

for the modulus margin namely MM ≥ 0.5(−6dB). Likewise, Ȧström and Hägglund

(1995) suggested that reasonable values of MM are in the range from 0.77 (Ms = 1.3,

robust tuning) to 0.5 (Ms = 2.0, aggressive tuning). Based on these recommendations,

the value MM = 0.6 (Ms = 1.667) was selected as a desired minimum value.

As with the gain and phase margin, the mathematical description of the penalty

function for the MM is defined by equation 3.28.

λMM =







10 − 9e−20(MM−MM)2 ∀ MM < MM

1 ∀ MM ≥ MM
(3.28)

and hence suitable objective functions are equations 3.29, 3.30 and 3.31.

JPID = min
Kp,Ki,Kd

{IAEboth · λMM} (3.29)

J2−DOF = min
Kp,Ki,Kd,b,c,N

{IAEboth · λMM} (3.30)

JGPC = min
N1,N2,Nu,λ,T (z−1)

{IAEboth · λMM} (3.31)

where IAEboth is defined by equation 3.27.
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Figure 3.9 Penalty function for the modulus margin specification

3.5.3 Input sensitivity function

In figure 2.1, the closed–loop transfer function between the output, Y (s), and the output

disturbance, Ud(s), can be used as a measurement of the disturbance rejection qualities

of the system. This function is called the input sensitivity function, U(s), and is defined

by equation 3.32

U(s) =
C(s)

1 + C(s)G(s)
(3.32)

The maximum value of this sensitivity function, Mu, is defined by equation 3.33

Mu = max
0≤ω≤∞

{

C(iω)

1 + C(iω)G(iω)

}

(3.33)

Ideally, for good disturbance rejection performance, Mu, must be close to one in the

range (0 ≤ ω < ∞), (Normey-Rico and Camacho, 1999; O’Mahony and Downing,

2000c). Using the Mu, another robust design method is presented. The objective func-

tions are:

J2−DOF = min
Kp,Ki,Kd,b,c,N

{IAEboth · λMu} (3.34)

JGPC = min
N1,N2,Nu,λ,T (z−1)

{IAEboth · λMu} (3.35)

where λMu is defined by equation 3.36 and graphically represented in figure 3.10.

λMu =







10 − 9e−0.0333(Mu−Mu)
2

∀ Mu > Mu

1 ∀ Mu ≤ Mu

(3.36)

The GA design procedure using objective functions based on

• the minimum gain and phase margin
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• the modulus margin

are evaluated in simulation in chapter 4. However, the design based on the input sen-

sitivity function is not. The primary reason for this is that the designs using Am/φm

and MM did not perform as well as anticipated in real–time (chapter 5) and this moti-

vated the use of the input sensitivity function. However, time did not permit the author

evaluate this technique using the simulation analysis of chapter 4.
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Chapter 4

Simulations

4.1 Models

The controllers were optimised using Genetic Algorithms based on the GPM and MM

objective functions described in chapter 3. This chapter presents some details of the

optimisation environment and proposes a novel solution to reduce the computation time

associated with the GA optimisation. Finally, both of the tuning strategies are applied

to the 13 benchmark models, the results are presented and discussed.

The systems which are discussed in this section were proposed in a paper by Ȧström

et al. (1998) and in a workshop by Ȧström and Hägglund (2000). Models from both

publications will be considered in this thesis and are summarised in table 4.1. The first

six models are representative of standard process control systems. All of the models

describe linear processes and are specified by a transfer function, G(s), which is analyt-

ical with finite poles and, possibly, an essential singularity at infinity. This description

covers finite dimensional systems with time delay (equations 4.3 and 4.8).

Table 4.1 Benchmark process models used to evaluate proposed controller design proce-

dure

G1(s) =
1

(s + 1)n
n = 1, 2, 3, 4, 8 (4.1)
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G2(s) =
1

(s + 1)(1 + αs)(1 + α2s)(1 + α3s)
α = 0.1, 0.2, 0.5, 1.0 (4.2)

G3(s) =
1

(s + 1)3
e−15s (4.3)

G4(s) =
1

s(s + 1)2
(4.4)

G5(s) =
1 − αs

(s + 1)3
α = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 (4.5)

G6(s) =
9

(s + 1)(s2 + αs + 9)
α = 0.2, 0.5, 1.0, 2.0 (4.6)

G7(s) = e−s (4.7)

G8(s) =
e−s

s
(4.8)

G9(s) =
1

10s + 1
(4.9)

G10(s) =
100

(s + 10)2

(

1

s + 1
+

0.5

s + 0.05

)

(4.10)

G11(s) =
150

(s + 10)2(s + 1)
(4.11)

G12(s) =
(s + 6)2

s(s + 1)2(s + 36)
(4.12)

G13(s) =
1

s2 − 1
(4.13)

Systems such as G1(s) are common in the process industry and for large values of n

the system behaves like a system with long time delay. Ȧström et al. (1998) used the

value n = 3, hence the function described by equation 4.1 will be also considered in this

thesis.

G1(s) =
1

(s + 1)3
(4.14)

The system G2(s) represents a process that has a dominant pole(s) and high–order

dynamics whose separation is determined by the parameter α. For the case where α = 1

the system G2(s) is identical to the system G1(s), for n = 4. These two systems, G1(s),

G2(s), represent processes which are relatively easy to control. In this thesis the specific

case where α = 0.2, as presented in equation 4.15, will be considered.

G2(s) =
1

(s + 1)(1 + 0.2s)(1 + 0.04s)(1 + 0.008s)
(4.15)
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System G3(s) is also similar to the model G1(s), however a time delay of 15(sec) is

included. This makes the control problem slightly more difficult. G4(s) is a relatively

simple lag plus integrating system. In contrast, the transfer function G5(s) contains

inverse unstable dynamics (zero in the right half of the s–plane) which can complicate

the control problem. With reference to equation 4.5, as α is increased the zero moves

towards the origin of the pole–zero map and the difficulty of control increases, (Ȧström

and Hägglund, 2000). To demonstrate this, consider the system G5(s) in a unity gain

negative feedback loop. For α = 0.1 the system has a gain margin of 15.8dB, when α = 2

the gain margin is equal to 1.16dB and when α = 5 the system is unstable, Am = −6dB.

The peak response of the transfer function, G5(jω), also increases with increasing α. In

this study, the choice α = 2 was made, which is presented in equation 4.16.

G5(s) =
1 − 2s

(s + 1)3
(4.16)

The underdamped system, equation 4.6, was included in Ȧström et al. (1998) but not

presented at the workshop, (Ȧström and Hägglund, 2000). The system has two complex

poles with the relative damping ζ = α/6. When the parameter α is decreased the system

becomes more difficult to control. In this thesis, the choice α = 2 was made and the

transfer function is defined by equation 4.17.

G6(s) =
9

(s + 1)(s2 + 2s + 9)
(4.17)

A time–delay of one second was chosen for systems G7(s) and G8(s) yielding the models:

G7(s) = e−s (4.18)

G8(s) =
e−s

s
(4.19)

The model G9(s) was not included by Ȧström et al. (1998) or Ȧström and Hägglund

(2000) but included as it is representative of some simple well–defined problems such as

a liquid level control problem. Closed–loop control of such systems is easy.

The process described by equation 4.10 contains both slow and fast modes. This

system has two fast modes with time constants 0.1(sec), one mode with a time constant

of 1(sec) and a slow mode with a time constant of 20(sec). The system has a static
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gain of 10 and the step response is dominated by the slow time constants, but it is the

faster modes that are critical for the closed–loop system, (Ȧström et al., 1998). The

transfer function equation 4.11 is similar, however the slowest term was removed which

simplifies the control problem somewhat. System G12(s) is also characterised by diverse

dynamics, incorporating an integrator, a pair of slow poles at s = −1, a fast pole at

s = −36 and a pair of zeros at s = −6. The final system, G13(s), is open–loop unstable

with poles at s = 1. The system is representative of classical control problems, e.g.

inverted pendulum and would be characterised as a system that is “difficult” to control.

4.2 Choosing the sampling period

The models given by equations of table 4.1 can be used to evaluate the PID and 2–DOF

PID controllers as both of these structures are defined in continuous time. While a

continuous–time GPC formulation is also possible, and reputedly offers many advan-

tages (Demirioglu and Gawthrop, 1991; Demircioglu and Karasu, 2000), this thesis will

consider the original, and more common, discrete–time algorithm. Clearly then, to de-

sign the controller a sampled version of the process transfer functions is required. Each

discrete–time model was obtained using the standard Z–transform, assuming the pres-

ence of a zero–order–hold circuit at the input. In section 2.5.1 some general comments

were made regarding the choice of sampling period and some rules were presented to

help guide this choice. Many of these rules are formulated in terms of the “desired” or

“specified” closed–loop dynamics. Given the lack of specifications, and the fact that the

desired response is not quantifiable, an indicative closed–loop response was obtained

by applying negative feedback with a unity gain controller. The exceptions are sys-

tems G7(s) and G13(s). Since a proportional controller in a negative feedback loop

does not stabilise the open–loop unstable transfer function, G13(s), a stabilising PD

controller was designed using root–locus techniques. The controller transfer function is

C(s) = 3.3(s + 1.14). A unity gain negative feedback loop also fails to stabilise sys-

tem G7(s) and therefore the proportional gain was reduced (arbitrarily) to a value of

0.1. In hindsight, a better choice might have been to use the closed–loop responses

obtained from the application of the PID and/or 2–DOF PID controllers, but this was
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not considered at the time.

System Rule Sampling period (sec)

Min Max

OL Settling time (eqn. 2.42) 0.752

CL Settling time (eqn. 2.42) 0.84

OL Rise time (eqn. 2.43) 0.422 1.055

G1(s) CL Rise time (eqn. 2.43) 0.187 0.467

Damped frequency (eqn. 2.44) 0.0967 0.29

Bandwidth (eqn. 2.45) 0.18 0.539

Natural frequency (eqn. 2.47) 0.22 0.68

OL Settling time (eqn. 2.42) 0.418

CL Settling time (eqn. 2.42) 0.228

OL Rise time (eqn. 2.43) 0.22 0.6

G2(s) CL Rise time (eqn. 2.43) 0.0933 0.233

Damped frequency (eqn. 2.44) 0.0629 0.189

Bandwidth (eqn. 2.45) 0.0909 0.273

Natural frequency (eqn. 2.47) 0.08 0.24

OL Settling time (eqn. 2.42) 2.24

CL Settling time (eqn. 2.42) N/A

OL Rise time (eqn. 2.43) 0.422 1.055

G3(s) CL Rise time (eqn. 2.43) 0.25 0.625

Damped frequency (eqn. 2.44) 0.479 1.44

Bandwidth (eqn. 2.45) 0.2 0.6

Natural frequency (eqn. 2.47) 1.14 3.43

OL Settling time (eqn. 2.42) 1

CL Settling time (eqn. 2.42) 3.09

OL Rise time (eqn. 2.43) 0.345 0.863

G4(s) CL Rise time (eqn. 2.43) 0.174 0.435

Damped frequency (eqn. 2.44) 0.112 0.337

Bandwidth (eqn. 2.45) 0.191 0.574
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Natural frequency (eqn. 2.47) 0.29 0.88

OL Settling time (eqn. 2.42) 0.849

CL Settling time (eqn. 2.42) 7.39

OL Rise time (eqn. 2.43) 0.614 1.5

G5(s) CL Rise time (eqn. 2.43) 0.3 0.77

Damped frequency (eqn. 2.44) 0.101 0.303

Bandwidth (eqn. 2.45) 0.105 0.314

Natural frequency (eqn. 2.47) 0.241 0.722

OL Settling time (eqn. 2.42) 0.375

CL Settling time (eqn. 2.42) 0.683

OL Rise time (eqn. 2.43) 0.218 0.545

G6(s) CL Rise time (eqn. 2.43) 0.0619 0.1548

Damped frequency (eqn. 2.44) 0.031 0.0916

Bandwidth (eqn. 2.45) 0.0565 0.169

Natural frequency (eqn. 2.47) 0.07 0.2

OL Settling time (eqn. 2.42) 0.99

CL Settling time (eqn. 2.42) 0.22

OL Rise time (eqn. 2.43) 0 0

G7(s) CL Rise time (eqn. 2.43) 0.039 0.154

Damped frequency (eqn. 2.44) 0.027 0.08

Bandwidth (eqn. 2.45) 0 N/A

Natural frequency (eqn. 2.47) 0.051 0.154

OL Settling time (eqn. 2.42) 0.1

CL Settling time (eqn. 2.42) 0.129

OL Rise time (eqn. 2.43) 0

G8(s) CL Rise time (eqn. 2.43) 0.079 0.199

Damped frequency (eqn. 2.44) 0.0626 0.188

Bandwidth (eqn. 2.45) 0.0977 0.293

Natural frequency (eqn. 2.47) 0.0437 0.146

OL Settling time (eqn. 2.42) 3.91
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CL Settling time (eqn. 2.42) 1.96

OL Rise time (eqn. 2.43) 2.22 5.55

G9(s) CL Rise time (eqn. 2.43) 1.11 2.75

Damped frequency (eqn. 2.44) N/A

Bandwidth (eqn. 2.45) 1.05 3.15

Natural frequency (eqn. 2.47) 1 3

OL Settling time (eqn. 2.42) 7.65

CL Settling time (eqn. 2.42) 1.03

OL Rise time (eqn. 2.43) 4.32 10.8

G10(s) CL Rise time (eqn. 2.43) 0.41 1.025

Damped frequency (eqn. 2.44) N/A

Bandwidth (eqn. 2.45) 0.188 0.563

Natural frequency (eqn. 2.47) 0.7 2.25

OL Settling time (eqn. 2.42) 0.412

CL Settling time (eqn. 2.42) 0.112

OL Rise time (eqn. 2.43) 0.223 0.557

G11(s) CL Rise time (eqn. 2.43) 0.067 0.167

Damped frequency (eqn. 2.44) 0.04 0.12

Bandwidth (eqn. 2.45) 0.0654 0.196

Natural frequency (eqn. 2.47) 0.046 0.139

OL Settling time (eqn. 2.42) 0.1

CL Settling time (eqn. 2.42) 1.78

OL Rise time (eqn. 2.43) 0.331 0.827

G12(s) CL Rise time (eqn. 2.43) 0.182 0.455

Damped frequency (eqn. 2.44) 0.11 0.329

Bandwidth (eqn. 2.45) 0.19 0.57

Natural frequency (eqn. 2.47) 0.252 0.757

OL Settling time (eqn. 2.42) N/A

CL Settling time (eqn. 2.42) 0.214

OL Rise time (eqn. 2.43) N/A
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G13(s) CL Rise time (eqn. 2.43) 0.07 0.21

Damped frequency (eqn. 2.44) 0.422 1.26

Bandwidth (eqn. 2.45) 0.07 0.22

Natural frequency (eqn. 2.47) 0.12 0.36

Table 4.2 Application of sampling rules to model transfer

functions

Table 4.2 summarises the application of these rules to the list of process models

under consideration. Some rules, such as the Bandwidth method (eqn. 2.45) provide

an upper and lower bound and these are listed as max and min respectively in table 4.2

while others, such as the settling time method yield a single nominal value. In table 4.2

the settling time and rise–time were calculated from the MATLAB step–response plots

while ωb, ωn and ζ were determined using the functions damp and bandwidth.

Prior to discussing the results presented in table 4.2 a few brief explanatory remarks

are appropriate. System G3(s), when controlled using a unity feedback controller, results

in an inordinately long settling time (∼ 1600sec) and that accounts for the n/a entry

for the closed–loop settling time method. System G7(s) has, in theory, an infinite

bandwidth and this accounts for the n/a entry for equation 2.45. System G13(s) is

open–loop unstable hence a value for the open–loop rise–time and settling–time could

not be computed. In closed–loop, systems G9(s) and G10(s) both yield a critically

damped response for which ζ = 1 and equation 2.44 becomes unbounded hence the n/a

entries in those rows. The rise– and settling–times for the integrating systems G4(s),

G8(s) and G12(s) were computed from the MATLAB impulse response plot. The time–

delay was included in the calculation of the settling time for systems G3(s), G7(s) and

G8(s).

An analysis of table 4.2 would immediately suggest that the various rules yield quite

a diverse range of recommendations — differing by up to a factor of seventy for G5(s).

That being said, reasonably consistent results are obtained from the last four methods

CL Rise time; damped frequency; bandwidth; natural frequency. This is especially

true for systems G1(s), G2(s), G4(s), G6(s), G7(s), G8(s), G9(s), G11(s) and G12(s).
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System G3(s) is very oscillatory in closed–loop and the relatively small values of ζ and

ωn (ζ = 0.01; ωn = 0.17) would account for the rather larger values obtained using the

damped and natural frequency methods. With system G5(s) the calculation based on

the closed–loop rise–time is slightly distorted as the effect of the inverse response was

incorporated within the rise–time metric itself. If this was excluded, and the metric

measured from +10% (as opposed to ±10%) to +90% of the final value of the steady–

state response, this metric would be in line with the others. Finally, the PD controller

designed for system G13(s) may have adversely effected the results for this system; the

closed–loop response is almost critically damped and this may account for the somewhat

more disparate results obtained in this case.

With the exception of G5(s) (and G7(s) for which the bandwidth method fails) the

closed–loop rise time and closed–loop bandwidth methods are almost perfectly corre-

lated. Since G5(s) is inverse–unstable this result is not totally unexpected. The dis-

crepancy is not large — the numbers are only out by a factor of 3. In contrast, the

settling time method, in general, suggests the use of a relatively long sampling period.

This may be attributed to the fact that the settling time is not the best measure of a

system’s “speed of response”. The metric is distorted by time–delay, inverse unstable

characteristics and low damping factor. In contrast, the rise–time metric is relatively

immune to these attributes. Based on this observation it is rational to suggest that

equation 2.42 be modified to yield smaller values for h. This hypothesis is supported by

two recent texts — that were not available to the author at the commencement of this

study; Zhu’s Multivariable System Identification for Process Control (Zhu, 2001) and

Corriou’s Process Control (Corriou, 2004). In the former text the author recommends

that the sampling period be chosen according to 0.01ts ≤ h ≤ 0.1ts while Corriou sug-

gests the choice 0.067ts ≤ h ≤ 0.167ts. Applying either of these lower bounds would

clearly result in recommendations that are more consistent with the results obtained

from the other rules.

In general, the philosophy advocated in this thesis has been to tend towards the

minimum recommended value for the sampling period. There are a number of reasons

for this:
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1. A continuous–time system has, in effect, a sampling period of 0(sec). A fair

comparison between digital and continuous would then imply that the minimum

possible value of sampling period be chosen.

2. In a digital control system, the sampling period limits the maximum achievable

bandwidth of the system. To get fast time–domain responses (i.e. large band-

width) a “small” sampling period is required. This is true for both set–point

tracking and disturbance rejection.

3. As mentioned previously, a unity gain proportional controller was used to generate

an indicative closed–loop response. This choice was motivated by simplicity. It

is highly probable that the GPC — in fact any controller — will result in much

better performance, namely faster rise–times, settling times and wider bandwidth,

and hence even shorter sampling periods than those indicated in table 4.2 might

be appropriate.

To the author’s knowledge the main disadvantages associated with fast sampling are

(i) numerical sensitivity and (ii) computational load. The numerical sensitivity primar-

ily arises from the application of the standard Z–transform which, for high sampling

frequencies, results in (a) the system poles tending to the point (−1, i0) in the z–plane

(b) the numerator coefficients, when expressed as a polynomial tending towards zero

and (c) for many systems, inverse unstable dynamics. Since the GPC does not involve

a pole–zero cancellation the latter is not a restriction. The numerical sensitivity is a

real problem when performing a discrete–time parameter estimation experiment at high

sampling frequencies. Numerical errors, round–off errors, sensor noise, etc. will then all

combine to shift the coefficients of the estimated discrete–time numerator and denomina-

tor. Because the system poles (in discrete time) are all bunched about the point (−1, i0)

and the numerator coefficients are quite small, deviations of three or four decimal places

are significant — the interested reader is referred to Isermann (1980), for a more compre-

hensive discussion. An inverse Z–transform may then transform these relatively small

deviations in discrete–time to significant movements in the Laplace plane and results in

continuous–time poles/zeros that are quite removed from the actual system dynamics.
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The idealised scenario studied here, i.e. the actual continuous–time dynamics are

available, an estimation experiment is not required, sensor noise is not present, means

that this problem is considerably reduced. In these simulations, the system is trans-

formed to discrete–time using MATLAB’s double precision floating point arithmetic and

all subsequent processing, including Simulink simulations, utilises the same precision.

Therefore, the use of a common platform for computation and simulation maintains the

integrity of the continuous–to–discrete and discrete–to–continuous transformations and

enables considerably higher sampling frequencies than might be advocated in practice.

A high sampling frequency also results in additional computational overhead. This

overhead naturally arises due to the reduced time slot within which the calculations

must be performed. With time–delayed systems an additional problem arises — the

dimension of the discrete–time system increases with reductions in the sampling period.

Most direct digital controller design procedures result in a controller that is, at least,

the same order as the process model. Therefore, high–order controller transfer functions

may result. These present additional computational load — and if the controller is to

be implemented on a separate system an additional source of numerical sensitivity (Keel

and Bhattacharyya, 1997). If, as is the case here, the design and implementation are

integrated then this problem is circumvented. In the GPC case, the controller parameter

N2 should generally be chosen to be longer than the system settling time — measured

in samples. A small sampling period will result in a long settling time (measured in

sampling periods). This can present its own challenges if the controller is to be designed

and implemented on–line as in an adaptive setting, as the dimension of the matrix G (see

equation 2.25) is directly related to N2. In a non–adaptive setting the GPC controller

can be implemented as two difference equations (figure 2.4) and therefore this is not a

significant issue.

Based on these considerations it is the author’s considered opinion that, in this

case, the advantages associated with employing a high sampling frequency outweigh

the disadvantages and therefore the author tended towards the minimum recommended

value of sampling period for each of the systems G1(s) — G13(s). Table 4.3 summarises

this choice. However, during the course of this research it was necessary to revisit this

71



4.2 Choosing the sampling period

Model G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13

h 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1

Table 4.3 Choice of sampling period for systems G1 to G13

PID 2DOF PID GPC

Model IAEboth Am φm IAEboth Am φm h(sec) IAEboth Am φm

G2(s) 0.409 22.70 45 0.27 15.59 45 0.1 0.46 6.13 44

Table 4.4 PID, 2–DOF PID and GPC controllers optimised for model G2

choice. The motivation for this is as follows. Consider the process model G2(s). When

the PID and 2–DOF PID controllers were tuned for this model, using the objective

function equation 3.24 — minimise the combined IAE criterion subject to minimum

constraints on the gain margin (Am ≥ 6dB) and phase margin (φm ≥ 45◦), the results

of table 4.4 were obtained. Sampling G2(s) at 0.1 second intervals yields the discrete–

time model

G2(z) =
0.0086944(z + 2.432)(z + 0.1505)(z + 0.001186)

(z − 3.727e − 006)(z − 0.08208)(z − 0.6065)(z − 0.9048)
(4.20)

The GPC controller was now tuned using the same criterion and the third column of

table 4.4 was obtained. It is evident, and quite unexpected, that the GPC controller

does not outperform the other controllers. Similar results were obtained for systems

G4(s), G8(s), G9(s), G10(s), G11(s), G12(s) and G13(s).

Considering system G2(z) it is clear, due to the inherent one sample delay caused by

the ZOH, that the minimum error that can be obtained is 0.1sec (it takes a minimum

of one sample to reach the set–point). To outperform the 2–DOF PID controller the

remainder of the (combined servo and regulator) dynamic error response must be less

than 0.17(sec) which is only feasible if a one–step–ahead design is realised. The logical

solution is to reduce the sampling period. This logic can be analytically supported

by noting that the PID controller yields a closed–loop rise–time of 0.19(sec) while the

2–DOF PID controller yields a closed–loop rise–time of 0.23(sec) and, according to

equation 2.43, a minimum sampling period of 0.02(sec) could be applied. A simulation

study was conducted to quantify the exact effect of the sampling period on the combined
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Figure 4.1 Sampling period versus performance

servo plus regulator integral of error response. In this study, the sampling period was

varied as follows: h := 2, 1, 0.5, 0.1, 0.07, 0.05, 0.025, 0.01, 0.008, 0.005. For each value

of h the corresponding discrete–time transfer function G2(z), was determined and an

optimal GPC controller was designed based on equation 3.26.

Figure 4.1 presents the variation of the combined integral of absolute error (IAEboth)

with sampling period (presented using a logarithmic scale for clarity). The IAEboth

decreases appreciably with decreasing h until the sampling period h = 0.005 is reached.

Beyond this point the IAEboth metric becomes relatively independent of the sampling

frequency. Based on these considerations a revised sampling period of h = 0.01 would

appear to be a sensible choice. The corresponding discrete–time transfer function is —

G2(z) =
4.8514 · 10−6(z + 7.49)(z + 0.7356)(z + 0.07135)

(z − 0.2865)(z − 0.7788)(z − 0.9512)(z − 0.99)
(4.21)

Compared with equation 4.21, the numerator coefficients have decreased three–fold and

would clearly be susceptible to numerical errors arising from a parameter estimation

experiment and the location of all three zeros has shifted to the left. The four poles

have migrated closer to the (−1, i0) point in the z–plane but are still distinguishable

which 4.21 would suggest that this choice of h is not too small. If the GPC is designed

based on equation table 4.5 results.
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PID 2DOF PID GPC

Model IAEboth Am φm IAEboth Am φm h(sec) IAEboth Am φm

G2(s) 0.409 22.70 45 0.27 15.59 45 0.01 0.208 11.30 45

Table 4.5 PID, 2–DOF PID and revised GPC controllers optimised for model G2

Model G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13

h 0.1 0.01 0.2 0.01 0.1 0.1 0.1 0.02 0.2 0.01 0.01 0.01 0.01

Table 4.6 Choice of revised sampling period for systems G1 to G13

A similar analysis was performed on systems G4(s), G8(s), G9(s), G10(s), G11(s),

G12(s), G13(s); table 4.6 lists the revised sampling periods that resulted. The sampling

period for system G3(s) also had to be modified. The sampling period of h = 0.2sec (as

indicated in table 4.5) results in a discrete–time delay of 75 sampling periods and a 78th

–order GPC controller. The high–order, of both the process and the controller, resulted

in severe numerical problems and, in general, the optimisation failed. It is important

to point out that it is the author’s belief that this issue is not due to a limitation of

the GPC algorithm, but is a function of its implementation. The underlying GPC code

is implemented as a Simulink S–function written in C source code where the delay is

modelled as leading zeros in the discrete–time numerator polynomial. This inherently

results in a high–order process model and a numerically weak implementation algorithm.

This algorithm needs to be improved to deal with high–order/delay–dominant processes

— possibly be extracting the delay and dealing with this separately — however this is

an issue for future work. A trial and error procedure revealed that a sampling period

of h = 0.7 solved this particular problem (the delay is now reduced to 21 sampling

periods) and therefore this choice was adopted during the following experiments. Table

4.6 summarises the sampling periods that were chosen for each of the process models.

4.3 Optimisation environment

Prior to discussing the results it is appropriate to make a few brief comments regarding

the implementation details. The cost function of section 3.5.1 and 3.5.2 was optimised
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MATLAB

GA
1) Initial population

2) Ranking
3) Selection
4) Crossover
5) Mutation
6) Evaluation of the fitness function
7) Reinsertion of offspring in the population
8) Are the termination criteria satisfied?
9) If conditions satisfied pass the controller variables outside the function

Objective function

1) Change chromosomes into controller parameters

2) Calculate robustness factors
3) Calculate  objective function

Controller parameters

IAE

Simulink

Calculate IAE

Figure 4.2 Flow diagram of optimisation environment

in the MATLAB/Simulink environment using a GA. Time did not permit an evaluation

of the input sensitivity criteria, section 3.5.3. This function will be discussed in the real–

time experiments. The flow chart in figure 4.2 illustrates the optimisation procedure.

In this figure the outer block presents the MATLAB environment within which the

GA code executes. The GA layer, in turn, calls the objective function routine which

interacts with the Simulink environment to determine the IAE criteria. First, the GA

parameters such as: range, accuracy, number of tuning parameters are defined and an

initial population is generated. The GA iterates as long as the specified termination

condition(s) are not fulfilled. The robustness factors (gain and phase margins, modulus

margin) are calculated in MATLAB and the IAE is calculated in Simulink. For the

systems with time delay an eight order Padé approximation is used in the calculation of

the MM . A high–order Padé approximation produces transfer functions with clustered

poles. Because such pole configurations tend to be very sensitive to perturbations, Padé

approximations greater than 10th order should be avoided, (Mathworks, 2004a). Trial

and error experimentation suggested that an eight order approximation was a sensible

choice.
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Both the PID and 2–DOF PID controllers were implemented in continuous–time

while the GPC controller was implemented as a discrete–time system. Hence, it was

necessary to choose a sampling period for the GPC controlled systems but not for the

other two. The choice of sampling period was discussed in the previous section and

values used are listed in table 4.6. The control signal was constrained to the range

−10 ≤ u(k) ≤ 10 in all of the simulations.

Extensive trial and error indicated that a common set of Simulink simulation para-

meters was possible, namely:

• Solver: variable step ODE45

• Output refine factor 3

• Relative error tolerance 1 · 10−6

The exception is model G7(s) where the relative error tolerance was set to the default

value, 1 · 10−3, due to numerical problems when the PID controllers were evaluated.

The same relative error tolerance and the output refine factor of 3, was used for model

G9(s), due to a high computational burden.

The time taken to optimise the controller parameters varied. For a simple model

controlled by the ideal PID controller the optimisation took about 15 minutes on a Pen-

tium IV, 1.8 GHz PC. However, tuning the GPC controller was more time consuming

and took up to two hours for models G5 and G12. A trade–off between computation

time and attaining the global optimum exists and can be negotiated by:

• Choosing the range over which the coefficients were tuned.

• Changing the population size.

• Changing the relative error tolerance parameter in Simulink.

Evaluating the objective function is the most time consuming component and requires

99% of the computation time. If the PID controller is considered, the calculation of

the IAE in the Simulink model absorbed 67% of the processing time while the function

margin, which returned the gain and the phase margins, required 32% of the time. In
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contrast, the GA operators (e.g. crossover, mutation, etc.) were very efficient and do

not require further optimisation. The calculation of the IAE for the PID controller

could be improved by the MATLAB lsim function, however, the GPC algorithm was

implemented in Simulink and for consistency this environment was maintained. The

fixed step solver is in general more time consuming, however, the objective function

evaluation is more accurate and therefore this choice was maintained. These solvers are

well documented in the Mathworks manual (Learning Simulink, 2004) and were also

analysed by O’Mahony and Downing (2000a).

Evaluating the objective function is the most time consuming component and re-

quires 99% of the computation time. If the PID controller is considered, the calculation

of the IAE in the Simulink model absorbed 67% of the processing time while the func-

tion margin, which returned the gain and the phase margins, required 32% of the time.

In contrast, the GA operators (e.g. crossover, mutation, etc.) were very efficient and

do not require further optimisation. The calculation of the IAE for the PID controller

could be improved by the MATLAB lsim function, however, the GPC algorithm was

implemented in Simulink and for consistency this environment was maintained. The

fixed step solver is in general more time consuming, however, the objective function

evaluation is more accurate and therefore this choice was maintained. These solvers are

well documented in the Mathworks manual and were also analysed by O’Mahony and

Downing (2000a).

A solution to speed the GA up is to implement a look up table. As was mentioned

before, the evaluation of the fitness function is the most time consuming part, so a faster

GA implies that the objective function must be executed quicker. GAs are stochastic

search techniques and a fitness function with the same controller parameters may be

evaluated a number times in each population. The number of unnecessary computations

increases with each generation, as the algorithm converges. To avoid this, a matrix

(look up table) is generated, where previously computed GA chromosomes are stored

with the equivalent value of the objective function. The algorithm checks whether

the fitness function was previously evaluated and, if so, the objective function is not

executed; instead the solution is passed through. A disadvantage of this method is that
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Figure 4.3 Effect of the look up table

the matrix grows with each member of the population that is evaluated. However, this

is not a serious restriction as the MATLAB find function is relatively fast and this

solution provides a faster off–line optimisation.

Consider the GPC parameter tuning problem on the previously mentioned PC. With-

out the look up table the optimisation takes almost 25 minutes and the population of

50 individuals requires, on average, 7.45(sec) to be evaluated. The time may vary de-

pending on the value of N2. If the look up table is implemented, individuals require

approximately 2.1(sec) to be evaluated and the optimisation is performed in 7 minutes.

This performance improvement is illustrated in figure 4.3, where the x–axis represents

the number of generations and the y–axis shows the time which is required to evaluate a

single generation. The dashed plot presents the GA solution without the look up table,

while the solid line corresponds to the case where the look up table is used. Note that

the initial population has been evaluated and this data has already been stored in the

matrix. As was mentioned before, 5% of the population is passed to the next generation

unchanged. This is the reason why both algorithms do not start at the average value

of 7(sec). The evaluation of this design is three times faster when the look up table is

included even though the dimension of the final matrix was 2860 rows and 8 columns

(7 tuning parameters and the result of objective function). The combination of the GA

with a look up table significantly reduces the computation time required to tune the

GPC controller, while the PID controller tuning time is reduced as well. This method
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PID 2–DOF PID GPC

model IAEboth Am φm IAEboth Am φm h(sec) IAEboth Am φm

G1 2.08 ∞ 44 1.62 14.64 45 0.1 1.242 9.14 48

G2 0.409 22.7 45 0.27 15.59 45 0.01 0.208 11.3 45

G3 42.9 6.27 64 41 6.02 64 0.7 33.9 6 60

G4 5.46 ∞ 44 1.4 9.24 9 0.01 0.838 11.87 71

G5 10.7 5.94 58 9.94 5.88 55 0.1 8.79 6 59

G6 1.44 ∞ 45 1.15 13.34 45 0.1 0.859 6.97 45

G7 2.59 ∞ 63 2.55 7.05 63 0.1 2.11 6.02 60

G8 7.39 8.02 47 4.74 5.82 44 0.02 2.83 9.33 71

G9 1.03 ∞ 78 0.746 ∞ 69 0.2 0.533 6.08 45

G10 0.38 ∞ 45 0.3 13.04 45 0.01 0.195 12.65 51

G11 0.351 ∞ 45 0.259 25.57 44 0.01 0.166 9.26 45

G12 1.09 ∞ 45 0.729 ∞ 45 0.01 0.531 7.69 52

G13 0.746 -11.68 50 0.354 -16.42 46 0.02 0.382 6.09 62

Table 4.7 Optimised IAEboth with constraints Am ≥ 6dB and φm ≥ 45◦

is most applicable when the objective function evaluation is time consuming. To the

author’s best knowledge, this solution has not been presented in the literature to date.

4.4 Results

4.4.1 The objective function based on GPM method

The simulation results for the first design (Am ≥ 6dB,φm ≥ 45◦) are presented in

table 4.7 while appendix A presents the details of the controller parameters and perfor-

mance criteria. Clearly, the gain and phase margin criteria were satisfied for all systems

with the exception of the inverted pendulum model, G13(s), where a negative gain mar-

gin was returned for the ideal PID and 2–DOF controllers. This does not imply that

the system is unstable. In both cases the GA was able to determine PID parameters

that stabilised the open–loop unstable system, G13(s), as is indicated by the small, finite

IAE value returned. The result is merely implying that the use of the gain (and phase)

margin criterion is misleading for this system. Since the system is open–loop unsta-

ble, stability may only be evaluated by applying Nyquist’s General Stability Criterion,
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Figure 4.4 Nyquist diagram of open–loop transfer function with controllers tuned for

G13(s)

namely:

Z = N + P (4.22)

where P is the number of unstable open–loop poles, N is the number of encirclements

of the critical {−1, i0} point (N is positive for clockwise encirclements and negative

for counter–clockwise encirclements) and Z is the number of closed–loop poles in the

right–half of the s–plane. The process transfer function contains one unstable open–

loop pole and since the ideal PID controller is restricted to having a pole at the origin,

P = 1. Therefore, to obtain a stable closed–loop system N = −1, i.e. the loop transfer

function must encircle the critical point at least once in a counter–clockwise direction.

An examination of the Nyquist plot for the resulting ideal PID controller (figure 4.4(a))

reveals that this is indeed the case. A similar result exists for the 2–DOF PID controller.

In figure 4.4, the loop transfer function intersects the negative real axis at -3.8

and therefore a negative gain margin is returned. The Nyquist plot of the loop transfer

function for the GPC controlled system is illustrated in figure 4.4(b). The same counter–

clockwise encirclement is evident. The loop transfer function is sixth–order (as opposed

to the third–order loop transfer function that results from the ideal PID design) and it

may be the case that the larger number of design parameters enabled a slightly more

intricate curve that intersects the negative real axis in two places. The first intersection,

at approximately -0.5, results in a positive gain margin of 6dB’s. However, the Am
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criterion (for all three controllers) is misleading for this system and must be treated

with caution. It is also possible that the phase margin criterion will return misleading

results for open–loop unstable systems. In general, the stability of open–loop unstable

systems may only be assessed by examining the number of encirclements of the critical

point. Clearly then, the gain and phase margin criteria may not (reliably) be used

to tune open–loop unstable systems and this represents a significant limitation of the

method.

From table 4.7 it is clear that the GPC and 2–DOF PID controllers yield a lower

IAE value (while satisfying the minimum robustness constraints) than the ideal PID

controller. It is not surprising that the 2–DOF controllers should outperform the 1–

DOF controller, however the GPC controller performs significantly better than the 2–

DOF PID controller — on average the IAE was reduced by 24%. The most significant

reductions occurred for the two integrating plants, G4(s) and G8(s) where the IAE was

reduced by 40%. Model G13(s) represents the only exception to this rule — the GPC

controller yielded a higher (by 8%) IAE value than the 2–DOF PID controller. However,

the fact that the latter did not satisfy the minimum Am specification may have biased

these results. A cursory examination of the loop gain margins reveals that, on average,

the Am associated with the 2–DOF PID controller is larger than the corresponding value

of the GPC controller. This would suggest that a classic compromise — robustness

versus performance — exists. However, this hypothesis is questionable as the phase

margin associated with the GPC design, is on average, the same or greater than that

for the 2–DOF PID controller.

To investigate the robustness versus performance idea further a second design was

performed where the minimum gain margin was increased to 14dB. The results are

summarised in table 4.8. Surprisingly, the results in this case are even clearer. The

results from the 1–DOF PID controller design will ignored be for the present. Likewise,

system G13 has already been discussed in some depth, and will be omitted from the

following discussion. Examining the table, it is evident that the GPC clearly outperforms

the 2–DOF PID controller for systems G1, G4, G5, G6, G7, G8, G10 and G11 in that

the combined IAE is lower, the gain margins are approximately equivalent and equal
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PID 2–DOF PID GPC

model IAEboth Am φm IAEboth Am φm h(sec) IAEboth Am φm

G1 2.05 ∞ 45 1.63 14.59 45 0.1 1.329 13.82 43

G2 0.407 22 45 0.256 17.02 45 0.01 0.233 14 53

G3 53.9 14 63 53.7 14.01 63 0.7 56 13.95 75

G4 4.47 ∞ 45 3.51 14.76 45 0.01 0.838 14 70

G5 15.6 14.01 60 15.6 14.02 57 0.1 12.8 14.17 67

G6 1.47 ∞ 45 1.15 14.22 45 0.1 0.921 14.08 45

G7 2.56 ∞ 62 3.09 14.19 61 0.1 2.51 14.44 62

G8 9.7 14.22 44 8.93 13.99 44 0.02 2.5 14.81 ∞

G9 1.03 ∞ 77 0.584 ∞ 80 0.2 0.548 14.15 47

G10 0.377 ∞ 45 0.331 13.99 45 0.01 0.195 14.01 50

G11 0.349 ∞ 45 0.297 14.33 45 0.01 0.189 14.01 51

G12 1.09 ∞ 45 0.588 ∞ 48 0.01 0.531 14.06 53

G13 0.746 -11.68 50 0.352 -20.37 44 0.02 0.3877 14.02 61

Table 4.8 Optimised IAEboth with constraints Am ≥ 14dB and φm ≥ 45◦

to 14dB’s while the phase margins are either similar {G6, G7} or the GPC results in

a larger phase margin metric. The GPC results in a smaller IAE value for system G2

while the 2–DOF PID controller results in a larger Am. A similar result is obtained

for system G12. For model G9 the 2–DOF PID controller yields better gain and phase

margin indices but the GPC minimises the IAE. The only system where the 2–DOF

yields a better IAE metric is model G3 and it is probable that if a smaller sampling

period could have been applied that this result would also have been overturned.

Overall, the GPC reduced the IAE value, on average, by approximately 24% while

satisfying the minimum robustness criteria that were specified. The GPC and 2–DOF

PID algorithms both have similar structures (they both have two degrees of freedom) and

a comparable number of tuning parameters and in this context the superior performance

of the GPC was a little surprising and would suggest that this controller may offer some

real benefit to the process industry.

A selection of closed–loop responses are illustrated in figures 4.5 and 4.6 where the

solid line represents the response of the GPC controller, the dashed line that of the

1–DOF PID controller and the dotted line the 2–DOF PID controller. In each of these
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Figure 4.5 Set–point following for G1(s), Am ≥ 6dB

figures the upper plot illustrates the closed–loop response to a unit step input occurring

at t = 0 and to a unit step disturbance. In figure 4.5 the disturbance was applied at

t0 = 10(sec), while in figure 4.6 the disturbance occurs at time t0 = 35(sec). Also shown

are the corresponding control signals. The superior performance of the GPC controller

is clearly evident in each case.

4.4.2 The objective function with constraints on MM

Table 4.9 summaries the tuning results when the objective function was given by equa-

tions: 3.29, 3.30 and 3.31. The constraint on the modulus margin (MM ≥ 0.6) was

satisfied for all controllers except for the GPC controller when model G8(s) was used.

Initially, the controllers were tuned with a constraint on the maximum value on the

Bode plot of the complementary sensitivity function, Mp ≤ 1.5. However, this did not

realise any real benefit, as the tables in appendix A.2 show that this constraint was

satisfied anyhow. Consequently, the cost function was simplified and only the MM was

included.

From table 4.9 can be seen that when the MM constraint is fulfilled, the gain and/or

phase margins are, in some cases, negative. This is especially true for the GPC design.
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Figure 4.6 Set–point following for G3(s), Am ≥ 6dB

Consider system G2(s) which is open–loop stable. The corresponding discrete–time

system, obtained through the standard Z–Transform with h = 0.01 is also stable. The

GPC which results from the GA optimisation, may, with reference to figure 2.4, be

represented by the following two transfer functions:

GPF =
T1(z)

S(z)
=

0.00517(z + 0.824)(z + 0.727)(z − 0.708)

(z − 0.7718)(z − 0.2865)(z2 − 1.739z + 0.7687)
(4.23)

Gc =
S(z)

∆R(z)
=

27181(z − 0.7718)(z − 0.2865)(z2 − 1.739z + 0.7687)

(z − 1)(z + 1.232)(z + 0.7344)(z + 0.04304)
(4.24)

Clearly the design results in a controller, Gc(z), which has a pole outside the unit

circle. Therefore the open–loop transfer function is unstable and, as with system G13,

the standard gain and phase margin criteria are no longer applicable. A Nyquist plot

of the open–loop transfer function reveals that the critical point is encircled once in the

counter–clockwise direction and therefore the closed–loop system is stable. Am analysis

of, G4, G6, G10 and G11 reveals that each of these closed–loop systems are stable (as

indicated by the finite IAE values) and that the negative gain and/or phase margin

index is a direct result of an unstable open–loop transfer function. For such systems the

classical gain and phase margin criteria are unreliable and stability must be ascertained

via encirclements of the critical point on the Nyquist diagram.
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PID 2–DOF PID GPC

model IAEboth Am φm MM IAEboth Am φm MM h(sec) IAEboth Am φm MM

G1(s) 2.01 ∞ 43 0.60 1.7 20.61 45 0.60 0.1 1.192 0.61 38 0.61

G2(s) 0.433 28.24 47 0.66 0.337 12.90 50 0.60 0.01 0.207 -4.09 -36 0.60

G3(s) 43.5 7.93 64 0.60 42.1 7.94 64 0.60 0.7 37.1 7.95 64 0.60

G4(s) 5.02 ∞ 42 0.59 3.81 22.21 41 0.59 0.01 0.816 -6.48 -38 0.60

G5(s) 12 8.27 60 0.60 11.7 8.15 58 0.60 0.1 10.4 7.90 65 0.60

G6(s) 1.62 ∞ 90 0.60 1.38 17.06 66 0.60 0.1 0.775 -6.52 37 0.60

G7(s) 2.61 ∞ 61 0.67 2.63 8.18 63 0.61 0.1 2.45 7.97 64 0.60

G8(s) 8.525 10.37 38 0.6 7.962 8.12 41 0.6 0.02 10.36 6.36 47 0.52

G9(s) 1.03 ∞ 78 1.02 0.589 ∞ 86 1.00 0.2 0.536 8.32 45 0.60

G10(s) 0.432 ∞ 42 0.60 0.33 18.42 45 0.60 0.01 0.195 -5.33 -37 0.60

G11(s) 0.375 ∞ 42 0.60 0.296 19.53 45 0.60 0.01 0.165 -4.29 -37 0.60

G12(s) 1.44 -33.19 51 0.86 0.819 -20.12 35 0.60 0.01 0.531 10.08 50 0.63

G13(s) 1.13 -12.09 62 1.00 0.476 -10.13 38 0.61 0.1 0.387 7.90 36 0.60

Table 4.9 Optimised IAEboth with constraint MM ≥ 0.6

A similar analysis can be applied to system G12(z) for the 1–DOF and 2–DOF PID

controllers. In both cases the gain margin criterion indicates that the system is unstable.

For the 1–DOF controlled system, MATLAB generates the (incomplete) Nyquist plot

of figure 4.7 (A). However, the open–loop transfer function consists of a double pole

at the origin (one due to the process transfer function while the other results from the

integral term of the PID controller). A double pole at the origin creates a +360◦ arc

in the clockwise direction that is infinitly large. A sketch of the real Nyquist diagram

(not to scale because of the infinite arc) is presented in figure B. The critical point is

encircled once in the clockwise direction and once in the anti–clockwise direction and

the net encirclement is zero. Since the open–loop transfer function has no unstable

poles, P = 0, and equation 4.22 yields Z = 0. Hence, the conventional gain margin

metric yields an incorrect result and stability can be (properly) assessed via the Nyquist

diargam. The negative gain margin for system G13(s) is a direct result of the open–loop

unstable pole and has already been discussed previously.

With the singular exception of system G8, the GPC yields better performance in

that the IAE criterion is minimised while, at the same time, the minimum robustness
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Figure 4.7 Nyquist plot of G12(z)

criterion that was specified are achieved. On average, the GPC reduces the combined

(servo plus regulator) IAE by almost 19% compared with the 1–DOF PID controller

and by 12% compared with the 2–DOF controller. This performance gain is somewhat

less than was achieved using the gain and phase margin criteria but still represents a

considerable gain in performance.

4.4.3 Summary of the results

Thirteen models, three objective functions and three controllers have been evaluated.

In summary, a few brief comments about the results are appropriate. First, the models

will be compared. A general opinion is that models with time delay were more difficult

to tune than the others. Many difficulties occurred due to the continuous–time descrip-

tion of the models. While the continuous–time transfer function is more intuitive, the

discrete–time or a state–space description is easier to implement and numerical prob-

lems (arising from numerical integration routines) do not occur. However, the choice of

sampling period is not trivial. For some models, like the inverted pendulum, G13, PID

controllers with satisfactory Am and φm criteria were not found.

These simulation results, on their own, may be very misleading. The designs which

work well on a linear model may fail when applied to a nonlinear plant with high

frequency noise and uncertain model. To further investigate this issue, real–time exper-

iments are presented in the next chapter.
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Chapter 5

Real–time application

In this chapter the controllers and the objective functions are evaluated based on a real–

time system. Design strategies based on the gain and phase margin, modulus margin and

the maximum value of the input sensitivity function on the Bode plot are analysed. The

three previously mentioned controllers are implemented and the results are discussed.

5.1 Flexible link

A flexible link was used to evaluate the controllers in a real–time application. It was

designed by Quanser 1 and a diagram is presented in figure 5.1. It consists of a thin piece

of steel, the link, which is controlled by a DC motor. The system output is measured

via two sensors. The first sensor (potentiometer 10kΩ) measures the angle of the link

(denoted by b in figure 5.1) while the second sensor, a strain gauge, is used to measure

the deflection of the tip (denoted by a in figure 5.1). The overall plant output — the

tip position, is determined by summing the outputs from each sensor. However, since

the strain gauge is more sensitive than the potentiometer, the following scaling was

suggested by Cunningham (2003) and applied here

y(t) = a(t) +
b(t)

9.13
(5.1)

The flexible link is effectively a position servo control problem where the objective is

to rapidly and accurately control the tip position and minimise the naturally occurring

1www.quanser.com
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Figure 5.1 Diagram of the flexible link: (i) side view (ii) top view

modes of vibration due to its flexible nature. These modes of vibration can be enhanced,

and model uncertainty introduced, by attaching a mass to the link. The mass may

be moved from the tip position towards the fixed end of the link. This application

considers five locations for the 84 gram mass. The nominal model corresponds to the

mass positioned at 150 units2 from the motor shaft (half–loaded). The other possibilities

correspond to the unloaded link, the case where the mass is positioned 100 units from

the shaft (quarter–loaded), the mass at 200 units (three quarter–loaded) and the fully–

loaded link (i.e mass at 250 units).

The flexible link is controlled from a PC via a Data Acquisition Unit, denoted as

DAU, in the block diagram, figure 5.2. The controller is designed in Simulink, version

3.0, while the environment and the executable code is created using the Real–Time

2150 units equal 27 centimeters

I/O BUS
DAU

IBM Compatible

Figure 5.2 Block diagram of the PC connected with the flexible link
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Workshop Toolbox, version 3.0.0. This executable is downloaded and executes on the

PC’s processor, in this case a 450MHz Intel Pentium III. Communication with the

flexible link occurs via the MultiQ–3 data acquisition unit while the companion software,

Wincon3, enables data acquisition, monitoring and control of the real–time experiment.

5.1.1 Identification of the flexible link

The models used to describe the flexible link were obtained from Cunningham (2003).

In his research the following methods were applied: step identification; impulse iden-

tification; Pseudo Random Binary Sequence (PRBS) correlation; closed–loop indirect

identification; closed–loop direct identification; iterative closed–loop identification (con-

troller redesign). The author found that the impulse identification gave the most accu-

rate model and chose the sampling time as h = 0.01. Based on this work the nominal

model, (mass 150), is given by equation 5.2

G(z) =
−0.01147(z − 1.16)(z − 0.1569)(z2 − 1.376z + 0.7694)

(z − 1)(z2 − 1.786z + 0.822)(z2 − 1.267z + 0.9421)
(5.2)

the unloaded model by equation 5.3

G(z) =
−0.011557(z − 1.253)(z + 0.2826)(z2 − 1.211z + 0.6305)

(z − 1)(z2 − 1.835z + 0.8812)(z2 − 0.4738z + 0.8164)
(5.3)

the mass at 100 by equation 5.4

G(z) =
−0.013618(z − 1.189)(z + 0.1436)(z2 − 1.621z + 0.8828)

(z − 1)(z2 − 1.797z + 0.8495)(z2 − 1.342z + 0.9201)
(5.4)

the mass at 200 by equation 5.5

G(z) =
−0.012424(z − 1.143)(z + 0.1543)(z2 − 1.222z + 0.5924)

(z − 1)(z2 − 1.791z + 0.8129)(z2 − 0.5981z + 0.9817)
(5.5)

the mass at 250 by equation 5.6

G(z) =
−0.0066031(z − 1.169)(z − 0.8365)(z + 0.9972)(z + 0.4297)

(z − 1)(z2 − 1.9z + 0.9063)(z2 + 1.52z + 0.9846)
(5.6)

These models were validated by subjecting both the models and the flexible link to

a step input. The time-domain responses of both the models and the real system were

compared and a close correlation between both was observed. Hence, the models were

judged to be sufficiently accurate for controller design purposes. Additional detail on

the model validation can be found in Cunningham (2003).

3delivered from the Quanser R©
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5.1.2 Tuning strategy

The controllers were applied to the flexible link to evaluate them on a real–time system.

Firstly, the controller parameters were tuned in the MATLAB/Simulink environment

using the nominal model, equation 5.2. In Simulink the IAEboth was calculated using

the general purpose fixed step solver (ODE5, Dormand–Prince formula) with a sampling

period of 0.01(sec). In keeping with equation 3.27 the controllers were tuned with the

simulation end time set to t1 = 5(sec) and the disturbance was applied at t0 = 3(sec).

The gain and phase margins were calculated using discrete transfer functions for

the GPC controller. Since the PID controllers were implemented as continuous–time

systems (and the process models discrete) a conversion was necessary for the gain and

phase margins to be computed. In all instances involving the PID and 2–DOF PID

controllers, the process transfer function was converted to a continuous–time transfer

function using the inverse Z–transform, assuming the presence of a zero–order–hold on

the input. The gain and phase margins were then determined for the continuous–time

system.

The first design was based on the gain and phase margin tuning technique, presented

in section 3.5.1. The IAE of the servo and regulatory response was optimised subject to

Am = 6dB and φm = 45◦, see equation 5.7. The second design, equation 5.8, assumed

a larger minimum gain margin and the third design employed the modulus margin.

However, the real–time results (detailed in section 5.1.3) for these three designs were

not encouraging — specifically the GA designed GPC was unable to stabilise the real–

time system, though adequate performance was achieved with both PI structures. Hence

a fourth design based on the input sensitivity function was proposed. This decision was

made at an advanced stage in the project and time did not permit for a comprehensive

simulation analysis as detailed in chapter 4. The value Mu = 6dB was chosen based

on trial and error and an examination of the input sensitivity function returned from

previous designs. The cost functions are listed below.

J1 = min {IAEboth · λAm · λφm} s.t. Am = 6dB, φm = 45◦ (5.7)

J2 = min {IAEboth · λAm · λφm} s.t. Am = 14dB, φm = 45◦ (5.8)
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Figure 5.3 Set point signal applied to the flexible link

J3 = min {IAEboth · λMM} s.t. MM = 0.6 (5.9)

J4 = min {IAEboth · λMu} s.t. Mu = 6dB (5.10)

The fourth design cannot be used to optimise the ideal PID controller, given by

equation 2.1, due to the pure derivative action. The Mu for this controller tends to

infinity. For this reason a filter on the derivative action, N , was introduced and the new

control law is given by equation 5.11. This new structure was optimised with respect to

equations 5.7–5.10. The controller coefficients are listed in Appendix B.

U(s) = E(s)

(

Kp +
Ki

s
+

Kds

1 + Kds

N

)

(5.11)

Clearly, this structure is also a one degree of freedom controller with a first order filter

on the derivative action. There is an additional tuning parameter, N , which assumes

integer values.

5.1.3 Results

The experiments that follow used the reference signal presented in figure 5.3. Ini-

tially, the control performance was evaluated in simulation. The IAE of the control

error, y(t)− r(t) is presented in figure 5.4 for the three controllers designed using equa-

tions 5.7–5.10. In these, and subsequent figures, the x–axis represents the controller

design philosophy that was applied, with design 1 corresponding to equation 5.7 and

design 4 to equation 5.10. The y–axis represents the IAE criterion. The IAE values
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Figure 5.4 IAE of the control error

are listed in appendix B (page 130). In figure 5.4(a) the simulation results are pre-

sented, while figure 5.4(b) shows results obtained from the real–time system. Similarly,

figure 5.5 illustrates the IAE of the control signal in simulation and real–time. The

real–time experiments were repeated three times and the average values presented.

The following sections evaluate these results from two perspectives (i) the choice of

objective function and (ii) the controller structure that was used.

Controller design strategy

It can be concluded from the simulation results presented in figure 5.4(a) that the

objective function J2 is not suited to this application. The IAE of the robust design,

J2, is more than twice that for J1, while approximately the same amount of energy is

required to move the tip, figure 5.5. The other three designs give similar results and
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Figure 5.5 IAE of the control signal
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could work properly, when applied to the real–time system. When the controllers were

applied to the flexible link, figure 5.4(b), a significantly sluggish servo response was

noted for the second design. From the IAE of the control signal it is clear that each of

the designs utilised a similar amount of energy and, in this context, neither design is

superior.

Controller evaluation

Figure 5.4(a) indicates that the GPC controller outperforms the other two controllers.

However, when the GPC controller was applied to the flexible link, figure 5.4(b), it

did not work for the first three designs. This is due to the high frequency gain of the

controller which amplified existing measurement noise and resulted in unstable perfor-

mance. This extreme sensitivity to measurement noise was evident in the real–time

application where the motor, and consequently the link, was vigorously perturbed by

control action. Over a very short time period the amplitude of this response reached

the limits of the physical system and the experiment was aborted. The origins of the

problem are evident from figure 5.6. Consider the controller design based on the nominal

model, equation 5.2, using the GA optimisation based on a minimum gain margin of

6dB and a minimum phase margin of 45◦.

Figure 5.6 illustrates the Bode magnitude response of both the input sensitivity

function (above) and the controller transfer function (below). It is well appreciated that

the high–frequency gain of the ideal PID controller is a significant factor that limits

applications of this controller yet, from figure 5.6(b) note that the GPC design has a

high–frequency gain (∼ 60dB at ω = 300rad/s) that is almost 100 times that of the

ideal PID controller (∼ 20dB at ω = 300rad/s). Recall also that the input sensitivity

function is one measure of how disturbances affect the control signal i.e. with reference

to figure 2.4 it defines the relationship U(z)/D(z) and thus how a disturbance, such as

unmeasurable noise, will affect the control signal. From figure 5.6(a) it is evident that

the GPC design results in a much larger input sensitivity function (by a factor of eight

at ω = 300rad/s) than the PID controller and hence accounts for the poor performance

of the GPC controller in practice. A similar problem occurs for the other two designs
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Figure 5.6 Bode magnitude plots of (a) input sensitivity function U and (b) controller

transfer function resulting from the GA optimisation based on Am = 6dB and φm = 45◦

and is documented in terms of the parameter, Mu, in equations B.6 and B.9 of appendix

B (compare, for example, with equations B.5 and B.8).

Examining the magnitude response of the complementary sensitivity function, fig-

ure 5.7, reveals that the GPC design has a larger bandwidth than the ideal PID controller

but, more significantly, that the magnitude response of the GPC design increases to a

maximum of 3dB’s at ω = 300rad/s. The shape of the complementary sensitivity func-

tion is known to influence a system’s robustness to model uncertainty. For example,

Doyle’s stability criterion (Doyle, 1984) gives the result —

|∆L(jω)| · |T(jω)| < 1 ∀ ω ∈ ℜ (5.12)

where ∆L(jω) represents the plant–model mismatch as multiplicative uncertainty, de-

fined as

∆L(jω) =
|G(jω) − Go(jω)|

|Go(jω)|
; (5.13)

G being the actual process and Go the nominal model. The implications of equation 5.12
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Figure 5.7 Complementary sensitivity function resulting from the GA optimisation based

on Am = 6dB and φm = 45◦

are that if, as is commonly the case, ∆L(jω) is characterised by high–gain at high

frequency then T must conversely have low gain at high frequencies. This is clearly

not the case for the GPC design, see figure 5.7, and therefore the GPC design will

be very sensitive to modelling inaccuracies and this would also account for the poor

performance of the controller in practice. In contrast, note that the ideal PID controller

results in an adequately–shaped complementary sensitivity function, though the spike

at ω ≈ 100rad/s is undesirable (the nominal model has a resonance at this frequency).

In summary then, the GA optimisation yielded a T (z−1) polynomial that gave satis-

factory deterministic disturbance rejection properties (as measured by the IAE), How-

ever, only the fourth design, which directly penalised the peak amplitude response of the

input sensitivity function, yielded adequate performance in the presence of measurement

noise and unmodelled dynamics. The other two candidate controllers provided stable

closed–loop performance for each of the designs. Examining the performance of these

controllers it is noticeable that the 2–DOF PID structure performs better than the ideal

PID algorithm in terms of the IAE of the control error.

A selection of the best closed–loop responses are illustrated in figure 5.8, where

the dashed line represents the response of the ideal PID controller, the dotted line

denotes the 2–DOF PID controller and the solid line the GPC controller. The ideal PID

controller and the 2–DOF PID controller were tuned using the first design, J1. The IAE

of the PID servo response is IAEyp = 1.65. The 2–DOF PID controller performs with
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Figure 5.9 IAE of the average plant uncertainty

IAEyp = 1.47, while the GPC controller was tuned using the fourth objective function

and performs with IAEyp = 1.46. The 2–DOF controllers perform slightly better than

the one degree of freedom controller.

Plant uncertainty

As was mentioned in the introduction, uncertainty may be incorporated by changing

the position of the mass on the flexible link. The previous controller designs were based

on the nominal model (half–loaded link), however four other configurations are also
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Figure 5.10 Set–point following of the full–loaded flexible link

possible. This section examines the performance of (i) the chosen objective function

and (ii) the controller structures when uncertainty is incorporated.

In figure 5.9 the results for model uncertainty are presented. The IAE value rep-

resents the mean IAE of the five experiments performed on the flexible link. The five

experiments corresponded to a) no load b) quarter–loaded c) half–loaded (nominal) d)

three quarter–loaded and e) fully–loaded link. Likewise, 5.9(b) represents the average

integrated absolute value of the control signal. Clearly, the controllers that satisfied the

nominal model also worked well over the range of load variations that were considered.

The average IAE in figure 5.9(a) is larger than that of figure 5.4(b) by 6%.

In general, the same trends are evident in that design two was overly robust and

design four yielded a stable closed–loop response for all controllers. Likewise, the PID

and 2–DOF PID controllers provided stable performance in all cases while the GPC only

worked for design four. The ideal PID and 2–DOF PID controllers provide comparable

performance for design one and three while the 2–DOF PID and GPC controllers provide

almost identical performance for design four.

In all cases it was found that the worst case (stable) response occurred when the

link was fully loaded. Figure 5.10 presents a typical response, where the PID controllers

were tuned using the first design and the GPC controller the fourth. The dashed line
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presents the response of ideal PID controller, the dotted line that of the 2–DOF PID

controller and the GPC controller is denoted using the solid line. As shown, the GPC

and 2–DOF PID display similar levels of performance, while the ideal PID controller

has significant overshoot and the initial control signal is very aggressive.

5.1.4 Discussion

The application to the flexible link demonstrates that the 2–DOF PID controller provides

a better level of performance than the ideal PID controller structure. This statement is

also supported by the extensive simulation study conducted in chapter 4. These results

only serve to support what is commonly known in the control community. In some cases,

such as second design of figure 5.9, a trade–off between performance and control activity

occurs but, in the majority, the 2–DOF controller performs better on both counts.

The gain and phase margin criteria worked very well for both PID controllers. This is

especially true for the case where the minimum robustness specification were Am = 6dB

and φm = 45◦. In contrast, the generalised predictive controller did not yield adequate

performance, in practice, when tuned using gain and phase margin criteria. It is the

author’s contention that this difference may be attributed to the large number of tuning

parameters associated with the GPC. For example, it is frequently possible to satisfy

minimum Am and φm specifications using the (primarily) servo parameters, N1, N2, Nu

and λ (or some subset of these) and with the T–polynomial set to unity. This may

result in a controller transfer function that displays very high gain at high frequencies

and is therefore sensitive to measurement noise and mismodelling effects. In essence,

satisfaction of classical robustness indices does not guarantee that the GPC will perform

well in practice. Specifically, even with adequate gain and phase margins the controller

may display very high gain at high frequencies.

Alternatively, it is possible to think of the GPC optimisation as an over–determined

problem — with an excess of tuning parameters and inconsistent results. For example,

it is possible to satisfy minimum Am and φm specifications using the (primarily) servo

parameters, N1, N2, Nu and λ (or some subset of these) while maintaining the T-

polynomial fixed or by fixing the servo parameters and optimising the T–polynomial. In
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general, a unique solution does not exist and re–running the same optimisation problem

will return a different set of coefficients that yield a similar optimum. Thus, the GPC

is, in a sense, disadvantaged by the large number of tuning parameters associated with

this controller.

In the GPC case, a thorough understanding of the controller, and the effect of its tun-

ing parameters is required if the controller is to be optimised in practice. Furthermore,

relatively sophisticated designs appear to be required, e.g. input sensitivity function.

Provide both of these issues are addressed, the controller performance can be optimised

but this application would suggest that the effort might be in vain. Figures 5.4(a) and

5.4(b) demonstrate that the 2–DOF PID controller yields practically identical perfor-

mance on the flexible link. Figure 5.7, which evaluates the performance over a range

of operating points, indicates that the 2–DOF PID is as robust to uncertainty as the

GPC. In both cases the 2–DOF has an important advantage — the simple Am, φm –

based designs perform admirably. In the GPC case the same design yielded an unstable

closed–loop.
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Chapter 6

Conclusions and future research

6.1 Conclusions

Just as academicians do not agree on which control algorithms and tuning techniques are

the best, industrial practitioners also have very different views on the state of the art in

process control technology. Model–Based Predictive Control has been developing since

the late seventies and during this time many different implementations have evolved.

Indeed, the ideal PID controller also has many different realisations and hundreds of

tuning techniques have been developed. In this scenario, any engineer who is going to

employ a controller to a SISO system could be disorientated. Hence, the main effort of

this thesis has been to evaluate the Generalised Predictive Controller, when applied to

the SISO system, and to compare its performance with that resulting from the other two

PID controllers. Performance was compared over a range of benchmark process transfer

functions where the controller parameters were tuned using the same objective function.

This allows the controllers to be compared like–with–like. The design philosophy was

based on minimising performance (IAE) subject to specified minimum constraints on

robustness (gain/phase margin, modulus margin, etc.). Finally the controllers were

evaluated on a real–time laboratory–scale process.

A general conclusion is that, for the specified design criteria, the GPC clearly out-

performed the two PID controllers in simulation. As with every comparison a trade–off

exists. In this case, the GPC performed better than the ideal PID controller but, on
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the other hand, it could be argued that the ideal PID controller displayed better ro-

bustness properties. In general, the gain margins associated with PID controller were

considerably larger than the specified minimum values. In contrast, in the GPC de-

signs the minimum gain margin was satisfied with little additional margin. This point

is debatable however, as an examination of the phase margin criterion will elucidate.

This clear superiority of the GPC controller did not translate into real–time perfor-

mance. Of the real–time experiments performed, the GPC algorithm failed to stabilise

the system for three out of the four designs. This is in clear contrast to the other two

designs which were very readily translated into real–time performance. Reasons for this

failure were identified. This study would suggest that a significant amount of prior

knowledge is required for a successful GPC implementation. This, coupled with the

complexity of the algorithm, the significant number of tuning parameters and the lack

of established tuning techniques would suggest that the GPC algorithm has little merit

for SISO process loops. In contrast, the industrial 2-DOF PID controller is a relatively

simple algorithm with well–understood tuning parameters and the design philosophy

translates directly into real–time results. The 2–DOF PID controller resulted in a sig-

nificant reduction in measured IAE — over 12% — relative to the ideal PID controller.

Considering that the PI controller is the current norm in the process industry it is clear

that “advanced” control algorithms do offer real benefits — however this study would

suggest that complexity beyond the 2-DOF PID controller may be of little advantage.

Of the four design philosophies, the design based on the input sensitivity function

worked best, in that it realised a successful design for all three controller structures. The

approach has the advantage in that it directly addresses closed–loop robustness and the

sensitivity to high–frequency noise — which was not addressed in the other three designs.

However, the design suffers from the disadvantage that there are few guidelines to aid

the choice of a suitable upper bound for this function. A value of 6dB was chosen for

the real–time application, but different processes would have different requirements and

alternative values may need to be found. The input sensitivity methodology is less suited

to the 1–DOF PID controller, primarily due to the nature of the controller which exhibits

high–gain at high–frequencies. Consequently, the real–time results were less impressive
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and the design based on a minimum gain margin of 6dB reduced the measured IAE by

approximately 75% relative to the design based on the input sensitivity function.

The optimisation based on minimum gain and phase margin criteria has the advan-

tage that recommendations for practical minimum gain and phase margins abound. The

design based on a 6dB gain margin worked particularly well for the ideal PID controller

while the experimental IAE value returned for the 2–DOF PID controller was practi-

cally identical to that achieved using the input sensitivity function. However, the design

based on the 14dB specification was less appropriate and resulted in a sluggish response

on the real–time system and in the simulation study also. Thus, for simple controllers

a design based on the classical gain and phase margin criteria is suitable, while a con-

sideration of the input sensitivity function does offer an advantage for more complex

structures; the modulus margin criteria would not appear to have any significant benefit

as a controller design paradigm.

Though the use of a genetic algorithm for controller design is not novel, the approach

adopted in this thesis, i.e. minimising performance subject to constraints on robustness

criteria, is particularly true for the designs that combine the IAE with the modulus

margin and the IAE with constraints on the input sensitivity function. The use of

penalty functions to direct the search for optimal controller coefficients would appear

to be a novel and effective method of realising the trade–off between performance and

robustness while the use of a look up table to reduce the computational complexity adds

further novelty to this work. It is especially useful when the calculation of the objective

function is time consuming. However, if the objective function consisted of a simple

mathematical equation, the use of a look up table may increase the overall computation

time. For the designs presented in this thesis a reduction in computation time resulted

in all cases — especially with the GPC optimisation.

Given the ready availability of personal computers, and the flexibility that genetic

algorithms offer, this approach offers a very real and practical alternative to traditional

controller tuning approaches. A notable advantage of the technique is that the tuning

strategy is completely open and can be easily tailored to accommodate additional re-

quirements if, and when, they arise. For example, the tutorial given by Fleming (2004)

102



6.2 Summary of contributions

demonstrated a GA where the objective function was extended to incorporate settling

time, rise time and percent overshoot. However, as with all “black–box” approaches

caution must be advised. The GA design critically depends on the specified objective

function and the “best” objective function remains elusive. Furthermore, in many cases

engineering knowledge will be required to place carefully chosen constraints on the pa-

rameters to be tuned. This is particularly evident with the GPC approach where the

variables N1, N2, λ and the T–polynomial all need careful selection if a feasible, practical

and stable design is to be achieved.

Finally, it was found that the performance of the GPC controller significantly de-

pended on the chosen sampling period. From the guidelines presented in section 2.5.1 it

was found that, in general, methods based on the frequency analysis were more suitable.

The method based on the settling time is very misleading for oscillatory systems while

the rise time method is very intuitive and suitable for stable systems.

This thesis has only been able to touch on the most general features of the controller

comparison. It is obvious that if one of the controllers was “the best”, then the others

would not be applied in industry. Most industrial processes are SISO which can be

well controlled by PID controllers, (Ȧström and Hägglund, 2001) hence, extra controller

complexity is not recommended. However, a trade–off always exists and a particular

controller must be chosen based on the circumstances of a particular application. Based

on this assumption, the controller tuning should be done with suitable constraints on

the control signal and the robustness parameters.

6.2 Summary of contributions

The main contributions of this thesis are that:

• Three controller structures were evaluated on a wide variety of simulation transfer

functions and on a real–time system. The results of the evaluation indicated that

the generalised predictive controller did not realise its potential in real–time and

that, as an advanced control algorithm, the 2–DOF PID was a more practical

alternative.
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• A number of novel controller design philosophies were proposed and evaluated.

Each of the design paradigms were based on optimising performance subject to

constraints on robustness criteria. In general, it was found that a robustness

constraint based on the input sensitivity function was most practical, however, for

the 1–DOF PID structure classical gain and phase margin criteria were superior.

• The controller parameters were optimised using a genetic algorithm. A novel

penalty function was incorporated to direct the GA while a look up table was

implemented to accelerate execution time.

6.3 Future research directions

This study is limited by the fact that the controllers were evaluated on a single system.

While the dynamics of this system are not trivial (integrating, badly damped, inverse

unstable) the system does not display any appreciable time delay. In order to validate

the work that has been carried out, an evaluation on additional real–time systems is

needed. In particular, a performance evaluation on a system with long time delay would

be particularly illuminating as predictive controllers would be expected to outperform

PID controllers in such applications. A further limitation of the study is that only

the servo response of the flexible link was investigated (as the system is fundamentally

a servo tracking problem). Many methods presented in the current literature focus

on the load disturbance properties rather than the set–point following, see the review

by O’Dwyer (2003) or the recent paper by Leva (2005). A real–time evaluation of the

load disturbance properties of these controllers would complete the analysis conducted

in this thesis.

Further research could focus on the design based on the input sensitivity, which

worked particularly well in practice. It would be very interesting to apply this tuning

technique to the benchmark test and compare with the results obtained for the other

methods, unfortunately time constraints did not permit this to be achieved. In par-

ticular, it would be interesting to determine if there is any upper bound which suits

all of the benchmark models and if practical recommendations can be specified. The
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author’s experience would suggest that such a value does not exist, however a relation

may be found. An alternative is to improve the first three designs and directly include

the aggressiveness of the control signal. This could be achieved by adding measurement

noise to the output of the nominal model in the simulation study and augmenting the

objective function to, perhaps, include weighting on the integrated value of the control

signal. This design with penalised control signal could be particularly suitable for the

GPC controller. However, it would not be trivial to choose a suitable weighting penalty

on the control signal as this would vary dramatically depending on the particular appli-

cation and this is the major problem with this.

Recent work in the genetic algorithm domain (Śmierzchalski and Michalewicz, 2000;

Grosman and Lewin, 2002) has focused on evolution programming, also called genetic

programming, rather than the simple genetic algorithm. Many researchers are also

advocating the use of a multi–objective GA (da Fonseca, 1995; Herreros et al., 2002).

As future work, it may be worth employing a multi–objective GA or a hybrid multi–

objective genetic programming, instead of the penalty factors developed in this thesis.

This would complicate the optimisation tool but the benefit is that faster optimisation

would be obtained. It is the author’s opinion that as long as the objective function

remains the same identical results should be obtained. Hence, this is not a critical point

for future research.
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Ȧström, K. J. and Hägglund, T. (2001). The future of PID control. Control Engineering

Practice, 9(11):1163–1175.
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Persson, P. and Ȧström, K. J. (1992). Dominant pole design — a unified view of PID

controller tuning. In Dugard, L., M’Saad, M., and Landau, I., editors, IFAC Adaptive

Systems in Control and Signal Processing, pages 377–382, Grenoble, France.

Phillips, C. and Nagle, H. (1990). Digital control system analysis and design. Prentice–

Hall International Editions, second edition.

115



BIBLIOGRAPHY

Porter, B. and Hicks, D. (1995). Genetic design of unconstrained digital PID controllers.

In Proceedings of the National Aerospace and Electronics Conference, NAECON, vol-

ume 1, pages 478 –485, Dayton, OH , USA.

Porter, B. and Hicks, D. L. (1993). Genetic design of adaptive digital model–following

flight–mode control systems. In Navigation and control conference, Monterey, USA.

Porter, B. and Jones, A. (1992). Genetic tuning of digital PID controllers. Electronics

letters, 28(9):843–844.

Poulin, E. and Pomerleau, A. (1997). Unified PID design method based on a maxi-

mum peak resonance specification. IEE Proceedings, Control Theory & Applications,

144(6):566–574.

Poulin, E. and Pomerleau, A. (1999). PI settings for integrating processes based on ulti-

mate cycle information. IEEE Transactions on Control Systems Technology, 7(4):509

– 511.

Qin, S. and Badgwell, T. (2003). A survey of industrial model predictive control tech-

nology. Control Engineering Practice, 11:733–764.

Rani, K. and Unbehauen, H. (1997). Study of predictive controller tuning methods.

Automatica, 33(12):2243–2248.

Rensburg, P. V., Shaw, I., and Wyk, J. V. (1998). Adaptive PID control using a ge-

netic algorithm. In Second International Conference on Knowledge–Based Intelligent

Electronic Systems, volume 2, pages 133 – 138, Adelaide, SA Australia.

Richalet, J., Rault, A., Testud, J., and Papon, J. (1976). Algorithmic control of in-

dustrial processes. In Proceedings 4th IFAC Symposium on Identification and System

Parametric Estimation, pages 1119–1167.

Robinson, B. and Clarke, D. W. (1991). Robustness effects of a prefilter in generalized

predictive control. IEE Proceedings D, 138(1):2–8.

116



BIBLIOGRAPHY

Ronco, E., Gawthrop, P. J., and Hill, D. J. (1999). A practical continuous–time non-

linear generalised predictive controller. Technical report ee–99001, Electrical and

Information Engineering School, The University of Sydney, NSW 2006, Australia.

Schei, T. S. (1994). Automatic tuning of PID controllers based on transfer function

estimation. Automatica, 30(12):1983–1989.

Schmitt, L. M. (2001). Fundamental study theory of genetic algorithms. Theoretical

Computer Science, 259:1–61.

Seborg, D., Edgar, T., and Mellichamp, D. (1989). Process Dynamics and Control. John

Wiley & Sons, New York.

Shafiei, Z. and Shenton, T. (1997). Frequency–domain design of PID controllers for

stable and unstable systems with time delay. Automatica, 33(12):2223–2232.

Shatiei, Z. and Shenton, T. (1994). Tuning of PID–type controllers for stable and

unstable systems with time delay. Automatica, 30:1609–1615.

Shen, J.-C. (2001). New tuning method for PID controller. In Conference on Control

Applications, pages 459–464, Mexico City.

Shinskey, F. G. (1990). How good are our controllers in absolute performance and

robustness? Measurement and Control, 23:114–121.
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Appendix A

A.1 Objective function incorporating GPM

A.1.1 The ideal PID controller

No of Kp Ki Kd IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp Ts

Optimised IAEboth with constraints Am ≥ 6dB and φm ≥ 45◦

G1(s) 6.78 2.63 5.98 2.08 1.32 1.64 ∞ 44 0.36 0.61 5.9 0.69 0.39 1.7 1 15 8.3

G2(s) 18.3 20 1.66 0.409 1.33 1.53 22.70 45 0.08 0.65 1.1 0.00 0.05 0.36 0.19 25 2.1

G3(s) 0.446 0.0507 1.23 42.9 1.00 1.95 6.27 64 20.66 0.51 75 3.24 20 23 10 14 49

G4(s) 1.87 0.659 2.95 5.46 1.33 1.63 ∞ 44 0.55 0.61 14 11.41 2 3.5 1.5 36 16

G5(s) 0.605 0.226 0.463 10.7 1.13 2.08 5.94 58 3.98 0.48 15 41.26 5.7 4.9 2.1 7 10
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No of Kp Ki Kd IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp Ts

G6(s) 1.9 2.14 0.729 1.44 1.47 2.00 ∞ 45 0.24 0.50 3.3 4.52 0.52 0.93 0.64 14 4.9

G7(s) 0.418 0.901 0.0146 2.59 1.00 1.52 ∞ 63 1.05 0.66 5.8 31.89 1.5 1.4 0.52 32 6.1

G8(s) 0.864 0.243 0.397 7.39 1.41 1.66 8.02 47 0.96 0.60 9 1.55 4.3 3.1 0.82 39 9.4

G9(s) 40.2 40.1 0.0915 1.03 1.12 0.99 ∞ 78 0.33 1.01 0 0.00 0.025 1 0.83 35 4

G10(s) 10.9 20 1.2 0.38 1.32 1.57 ∞ 45 0.07 0.64 0.95 0.05 0.05 0.33 0.16 28 1.5

G11(s) 12.4 20 1.38 0.351 1.32 1.59 ∞ 45 0.07 0.63 1 0.00 0.05 0.3 0.16 21 1.6

G12(s) 20 11.8 7.99 1.09 1.71 1.31 ∞ 45 0.24 0.76 2 0.00 0.085 1 0.56 40 4.6

G13(s) 32.5 48.7 6.53 0.746 1.73 1.18 -11.68 50 0.12 0.85 0.79 0.00 0.021 0.72 0.28 65 2.5

Optimised IAEboth with constraints Am ≥ 14dB and φm ≥ 45◦

G1(s) 6.59 2.89 5.64 2.05 1.32 1.64 ∞ 45 0.37 0.61 5.4 1.49 0.36 1.7 1 18 7.7

G2(s) 19.4 29.5 1.9 0.407 1.32 1.54 22.00 45 0.08 0.65 0.77 0.00 0.034 0.37 0.18 31 1.8

G3(s) 0.224 0.039 0.449 53.9 1.00 1.45 14.00 63 28.22 0.69 86 2.34 27 27 21 2.9 70

G4(s) 1.89 0.946 3.84 4.47 1.32 1.63 ∞ 45 0.47 0.61 17 23.83 1.8 4 1.6 44 17

G5(s) 0.234 0.156 0.224 15.6 1.01 1.53 14.01 60 6.64 0.65 27 37.88 8.2 7.3 5.9 6.1 22

G6(s) 1.88 2.17 0.8 1.47 1.44 1.95 ∞ 45 0.23 0.51 5.2 6.03 0.52 0.96 0.64 17 4.8

G7(s) 0.419 0.937 0.0293 2.56 1.00 1.43 ∞ 62 1.08 0.70 5.7 35.61 1.4 1.4 0.54 33 3.7

G8(s) 0.739 0.156 0.195 9.7 1.39 1.62 14.22 44 1.04 0.62 15 0.00 6.6 3.1 0.93 43 12

G9(s) 29.4 24.8 0.0305 1.03 1.14 1.00 ∞ 77 0.44 1.00 1.1 0.00 0.04 0.99 0.85 28 4.1

G10(s) 11.6 20 1.33 0.377 1.32 1.59 ∞ 45 0.07 0.63 0.97 0.05 0.05 0.33 0.16 23 1.6

G11(s) 12.2 20 1.34 0.349 1.32 1.59 ∞ 45 0.07 0.63 0.99 0.00 0.05 0.3 0.16 21 1.6

G12(s) 20 11.8 7.99 1.09 1.71 1.31 ∞ 45 0.24 0.76 2 0.00 0.085 1 0.56 40 4.6
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No of Kp Ki Kd IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp Ts

G13(s) 32.5 48.7 6.53 0.746 1.73 1.18 -11.68 50 0.12 0.85 0.79 0.00 0.021 0.72 0.28 65 2.5
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A.1.2 The 2–DOF PID controller

No of Kp Ki Kd b c N IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp Ts

Optimised IAEboth with constraints Am ≥ 6dB and φm ≥ 45◦

G1(s) 4.01 2.32 3.2 0.715 0.999 7 1.62 1.13 1.78 14.64 45 0.53 0.56 4.8 5.74 0.49 1.1 1.2 4.3 6.5

G2(s) 19.1 20 2.01 0.829 0.106 14 0.27 1.00 1.64 15.59 45 0.07 0.61 1.1 0.00 0.05 0.22 0.23 2.4 0.49

G3(s) 0.455 0.0513 1.24 0.999 0.999 29 41 1.01 2.01 6.02 64 21.00 0.50 75 4.70 20 21 11 11 58

G4(s) 11.9 9.84 10.4 0.449 0.999 31 1.4 5.98 6.54 9.24 9 0.05 0.15 2.2 20.32 0.15 1.3 0.92 20 8.8

G5(s) 0.594 0.234 0.425 0.999 0.999 20 9.94 1.18 2.10 5.88 55 3.66 0.48 13 39.96 5.6 4.3 2.6 1 6

G6(s) 1.65 3.31 0.792 0.789 0.997 15 1.15 1.43 2.15 13.34 45 0.25 0.47 4.2 16.15 0.41 0.74 0.61 16 5.5

G7(s) 0.222 0.911 9.62 0.734 0.991 1 2.55 1.00 1.80 7.05 63 1.08 0.56 6.1 35.04 1.5 1.5 0.59 29 5.1

G8(s) 1.06 0.325 0.477 0.676 0.999 13 4.74 1.04 2.08 5.82 44 0.70 0.48 8.4 0.66 3.1 1.6 0.54 34 5.7

G9(s) 20 19.2 0.0525 0.594 0.716 27 0.746 1.02 1.00 ∞ 69 0.55 1.00 1.6 2.66 0.055 0.69 1.1 6.4 3.7

G10(s) 6.36 15.4 0.776 0.648 0.999 4 0.3 1.05 1.78 13.04 45 0.10 0.56 0.95 3.79 0.071 0.23 0.22 4.4 1.3

G11(s) 11.1 19.6 1.22 0.731 0.998 31 0.259 1.16 1.64 25.57 44 0.07 0.61 0.98 0.00 0.051 0.21 0.22 1.8 0.37

G12(s) 20 11.8 9.07 0.673 0.997 8 0.729 1.41 1.31 ∞ 45 0.21 0.77 2.1 0.01 0.085 0.64 0.81 2.8 3.5

G13(s) 45.2 50 8.29 0.630 0.987 6 0.354 1.27 1.35 -16.42 46 0.08 0.74 0.52 0.00 0.02 0.33 0.37 3.2 0.93
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No of Kp Ki Kd b c N IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp Ts

Optimised IAEboth with constraints Am ≥ 14dB and φm ≥ 45◦

G1(s) 4.29 2.28 3.62 0.760 0.992 8 1.63 1.19 1.79 14.59 45 0.49 0.56 5.2 4.48 0.49 1.2 1.2 5.4 6.6

G2(s) 18.6 32 1.95 0.674 0.155 19 0.256 1.00 1.60 17.02 45 0.08 0.63 0.75 0.00 0.031 0.22 0.24 1.5 0.4

G3(s) 0.224 0.039 0.468 0.992 0.992 30 53.7 1.00 1.44 14.01 63 28.26 0.69 87 2.38 27 27 24 2.4 69

G4(s) 1.22 0.906 3.06 0.566 0.992 23 3.51 1.26 1.81 14.76 45 0.57 0.55 19 43.77 2.8 2.3 1.4 20 16

G5(s) 0.224 0.166 0.244 0.992 0.992 18 15.6 1.05 1.60 14.02 57 5.98 0.63 27 37.92 8.3 7.3 6.3 8 22

G6(s) 1.66 3.27 0.81 0.798 0.992 17 1.15 1.41 2.11 14.22 45 0.24 0.47 4.2 16.16 0.41 0.74 0.64 16 5.4

G7(s) 0.0976 0.732 0.849 0.992 0.992 1 3.09 1.01 1.49 14.19 61 1.44 0.67 5.3 6.63 1.6 1.6 0.98 6.6 4

G8(s) 0.663 0.146 0.176 0.605 0.992 31 8.93 1.01 1.57 13.99 44 1.15 0.64 12 0.12 6.8 2.1 2.2 3.5 8.6

G9(s) 47.1 49.4 0.299 0.581 0.985 27 0.498 1.00 1.00 ∞ 81 0.29 1.00 0 4.95 0.024 0.48 0.8 0.14 1.3

G10(s) 6.77 9.99 0.702 0.775 0.992 4 0.331 1.12 1.75 13.99 45 0.10 0.57 1.4 0.10 0.1 0.23 0.21 3.4 0.8

G11(s) 7.94 9.99 0.839 0.845 0.992 5 0.297 1.19 1.76 14.33 45 0.09 0.57 1.5 0.00 0.1 0.2 0.21 2.6 0.75

G12(s) 50 22.3 14 0.767 0.992 4 0.588 1.44 1.23 ∞ 48 0.15 0.81 0 0.00 0.045 0.54 0.6 2.3 2.1

G13(s) 50 35.8 9.18 0.752 0.969 5 0.352 1.31 1.43 -20.37 44 0.07 0.70 0 0.00 0.028 0.32 0.37 1.1 0.59
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A.1.3 The GPC controller

No of h N1 N2 Nu λ T (z−1) IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (sec) (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp

Optimised IAEboth with constraints Am ≥ 6dB and φm ≥ 45◦

G1(s) 0.1 1 128 16 0.078 (1 + 0.651z−1)(1 + 0.439z−1)(1 + 0.245z−1) 1.24 1.00 1.63 9.14 48 0.22 0.62 1.63 12.82 0.04 1.20 1.07 7.9

G2(s) 0.01 8 11 1 1 · 10−6 (1 + 0.801z−1)(1 + 0.737z−1)(1 − 0.900z−1) 0.208 1.00 1.41 11.30 45 0.02 0.71 0.0 0 0.001 0.2 0.1 5.1

G3(s) 0.70 22 70 1 1 · 10−6 (1 + 0.329z−1)(1 − 0.166z−1)(1 + 0.445z−1) 33.9 1.00 2.00 6.00 60 2.27 0.50 38.3 0 16 17.9 4.1 0.0

G4(s) 0.01 8 72 1 0.078 (1 + 0.308z−1)(1 + 0.501z−1)(1 + 0.590z−1) 0.838 1.02 1.40 11.87 71 0.05 0.71 0.0 15 ≃ 0 0.8 0.6 10.6

G5(s) 0.15 8 31 2 1 · 10−6 (1 − 0.898z−1)(1 − 0.898z−1)(1 − 0.897z−1) 8.79 2.06 2.01 6.00 59 3.88 0.50 14.3 49 5.6 3.2 1.3 0.1

G6(s) 0.10 4 30 6 0.23 (1 + 0.423z−1)(1 + 0.357z−1)(1 + 0.395z−1) 0.859 1.00 1.86 6.97 45 0.13 0.54 1.4 14 0.088 0.8 0.7 9.3

G7(s) 0.10 21 69 1 0.47 (1 − 0.002z−1)(1 + 0.028z−1)(1 − 0.016z−1) 2.11 1.00 2.00 6.02 60 1.00 0.50 2.1 0 1.1 1.1 0.0 99.0

G8(s) 0.02 50 86 12 6.5 (1 − 0.896z−1)(1 − 0.453z−1)(1 − 0.896z−1) 2.83 1.00 4.40 9.33 71 0.12 0.23 3.5 0.6 1.5 1.4 0.5 2.1

G9(s) 0.2 1 163 8 1 · 10−6 (1 − 0.451z−1)(1 − 0.435z−1)(1 + 0.051z−1) 0.533 1.00 1.99 6.08 45 0.15 0.50 0 0 0.01 0.52 0.18 0.2

G10(s) 0.01 1 59 9 0.078 (1 − 0.996z−1)(1 + 0.641z−1)(1 + 0.698z−1) 0.195 1.00 1.41 12.65 51 0.03 0.71 0.0 4.5 0.003 0.2 0.2 3.2

G11(s) 0.01 9 9 1 1 · 10−6 (1 + 0.648z−1)(1 − 0.826z−1)(1 + 0.548z−1) 0.166 1.00 1.59 9.26 45 0.02 0.63 0.0 1.8 ≃ 0 0.2 0.1 6.0

G12(s) 0.01 16 32 1 1 · 10−6 (1 + 0.245z−1)(1 − 0.906z−1)(1 − 0.962z−1) 0.531 1.00 1.81 7.69 52 0.01 0.55 0.0 0.16 ≃ 0 0.5 0.4 5.6

G13(s) 0.02 1 55 11 0.079 (1 + 0.929z−1)(1 + 0.608z−1)(1 + 0.380z−1) 0.382 1.00 1.99 6.09 62 0.08 0.50 0 3.40 ≃ 0 0.38 0.43 1.5
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No of h N1 N2 Nu λ T (z−1) IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (sec) (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp

Optimised IAEboth with constraints Am ≥ 14dB and φm ≥ 45◦

G1(s) 0.1 6 95 10 0.078 (1 − 0.433z−1)(1 + 0.751z−1)(1 + 0.344z−1) 1.33 1.00 1.49 13.82 43 0.21 0.67 1.97 4.97 0.06 1.27 1.27 3.3

G2(s) 0.01 4 25 2 0.078 (1 + 0.228z−1)(1 + 0.517z−1)(1 + 0.899z−1) 0.233 1.00 1.25 14.00 53 0.04 0.80 0.0 9.8 0.0027 0.2 0.2 7.0

G3(s) 0.70 23 23 1 1 · 10−6 (1 + 0.081z−1)(1 + 0.161z−1)(1 − 0.977z−1) 56 1.00 1.29 13.95 75 55.86 0.77 147.0 0 43 15.9 0.7 11.2

G4(s) 0.01 8 72 1 0.078 (1 + 0.809z−1)(1 + 0.389z−1)(1 + 0.074z−1) 0.838 1.02 1.27 14.00 70 0.05 0.78 0.0 15 0.0015 0.8 0.6 10.6

G5(s) 0.15 2 54 4 0.16 (1 − 0.934z−1)(1 − 0.947z−1)(1 + 0.017z−1) 12.8 1.02 1.43 14.17 67 8.18 0.70 22.0 40 8.3 4.5 4.2 0.0

G6(s) 0.10 2 46 4 0.23 (1 + 0.749z−1)(1 − 0.762z−1)(1 + 0.682z−1) 0.921 1.03 1.57 14.08 45 0.17 0.64 1.7 6.1 0.17 0.8 0.6 11.7

G7(s) 0.10 10 67 2 5.6 (1 − 0.711z−1)(1 − 0.382z−1)(1 + 0.608z−1) 2.51 1.00 1.77 14.44 62 1.43 0.56 3.4 0 1.5 1.1 0.3 8.5

G8(s) 0.02 63 122 10 0.16 (1 − 0.922z−1)(1 − 0.739z−1)(1 − 0.922z−1) 2.5 1.02 4.16 14.81 ∞ 0.24 3.7 0.01 1.4 1.1 0.2 2.6

G9(s) 0.2 1 75 8 1 · 10−6 (1 − 0.529z−1)(1 − 0.443z−1)(1 − 0.443z−1) 0.548 1.00 1.52 14.15 47 0.25 0.66 0.80 0 0.03 0.52 0.18 0

G10(s) 0.01 1 59 9 0.078 (1 − 0.996z−1)(1 + 0.854z−1)(1 + 0.306z−1) 0.195 1.00 1.25 14.01 50 0.03 0.80 0.0 4.6 ≃ 0 0.2 0.2 3.2

G11(s) 0.01 3 21 1 0.078 (1 + 0.882z−1)(1 − 0.122z−1)(1 + 0.212z−1) 0.189 1.00 1.30 14.01 51 0.03 0.77 0.0 10 ≃ 0 0.2 0.2 7.1

G12(s) 0.01 16 32 1 1 · 10−6 (1 − 0.713z−1)(1 − 0.864z−1)(1 − 0.956z−1) 0.531 1.00 1.38 14.06 53 0.02 0.72 0.0 7.8 ≃ 0 0.5 0.4 5.6

G13(s) 0.02 1 21 1 0.079 (1 + 0.506z−1)(1 + 0.239z−1)(1 − 0.020z−1) 0.388 1.00 1.26 14.02 61 0.06 0.79 0 6.77 0 0.38 0.41 6.2
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A.2 Objective function incorporating the sensitivity functions

A.2.1 The ideal PID controller

No of Kp Ki Kd IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp Ts

Optimised IAEboth with constraint MM ≥ 0.6

G1(s) 6.98 2.87 5.63 2.01 1.37 1.68 ∞ 43 0.35 0.60 5.5 0.57 0.35 1.7 0.98 19 7.7

G2(s) 10 10 0.701 0.433 1.28 1.51 28.24 47 0.13 0.66 1.7 0.00 0.1 0.33 0.22 26 1.7

G3(s) 0.419 0.0488 0.968 43.5 1.00 1.67 7.93 64 22.09 0.60 75 2.66 21 23 11 9.1 60

G4(s) 2.12 0.634 3.2 5.02 1.41 1.68 ∞ 42 0.49 0.59 14 6.47 1.8 3.2 1.5 30 15

G5(s) 0.463 0.197 0.368 12 1.01 1.67 8.27 60 5.03 0.60 15 40.79 6.4 5.5 3.5 3.8 15

G6(s) 1.43 1.65 0.578 1.62 1.08 1.67 ∞ 90 1.09 0.60 3.6 3.83 0.65 0.97 0.77 12 5.1

G7(s) 0.419 0.937 0.0195 2.61 1.00 1.50 ∞ 61 1.06 0.67 4.6 35.60 1.5 1.5 0.5 36 7.2

G8(s) 0.685 0.641 3.4 8.85 1.75 1.68 8.10 36 0.89 0.60 0.95 17 5.36 3.91 0.95 53 13.38

G9(s) 34.2 32.2 0.177 1.03 1.14 0.98 ∞ 78 0.38 1.02 0.62 0.00 0.031 1 0.83 32 4.1

G10(s) 10 10 0.859 0.432 1.39 1.67 ∞ 42 0.08 0.60 1.7 0.04 0.1 0.33 0.16 25 2.3

G11(s) 10 10 0.798 0.375 1.39 1.67 ∞ 42 0.08 0.60 1.7 0.00 0.1 0.28 0.17 24 1.7

G12(s) 10 6.31 6.47 1.44 1.51 1.17 -33.19 51 0.33 0.86 3 1.86 0.17 1.3 0.76 38 4.6

G13(s) 10 6.72 4.52 1.13 1.51 1.00 -12.09 62 0.24 1.00 2.5 0.13 0.15 0.98 0.51 40 3.3
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A.2.2 The 2–DOF PID controller

No of Kp Ki Kd b c N IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp Ts

Optimised IAEboth with constraint MM ≥ 0.6

G1(s) 4.64 2.19 3.3 0.698 0.992 15 1.7 1.08 1.68 20.61 45 0.51 0.60 5.3 1.05 0.47 1.2 1.5 2.4 6.2

G2(s) 8.12 9.99 0.966 0.845 0.992 2 0.337 1.05 1.66 12.90 50 0.14 0.60 1.6 0.00 0.1 0.24 0.24 3.6 0.94

G3(s) 0.42 0.0488 0.927 0.992 0.992 25 42.1 1.00 1.67 7.94 64 22.01 0.60 77 3.19 21 21 12 4.5 59

G4(s) 1.52 0.511 1.98 0.599 0.999 26 3.81 1.19 1.69 22.21 41 0.67 0.59 14 9.87 2.4 1.6 1.8 5.4 9.7

G5(s) 0.458 0.204 0.382 0.999 0.999 30 11.7 1.03 1.67 8.15 58 4.72 0.60 19 40.96 6.4 5.3 4.7 3.1 15

G6(s) 1.15 2.3 0.521 0.915 0.999 16 1.38 1.08 1.68 17.06 66 0.81 0.60 4.8 13.67 0.58 0.81 0.77 14 3.8

G7(s) 0.0195 0.868 9.99 0.008 0.961 19 2.63 1.00 1.64 8.18 63 1.19 0.61 5.2 24.48 1.4 1.4 0.65 21 4.1

G8(s) 0.672 0.205 0.273 0.612 0.985 20 7.962 1.11 1.67 8.12 41 1.05 0.60 0 20 5.73 3.62 1.83 11 9.55

G9(s) 49.2 20.3 0.0122 0.798 0.519 1 0.589 0.99 1.00 ∞ 86 0.31 1.00 0 0.03 0.049 0.54 0.88 0.004 1.3

G10(s) 8.38 10 0.848 0.804 0.999 9 0.33 1.16 1.67 18.42 45 0.09 0.60 1.6 0.06 0.1 0.23 0.22 2 0.79

G11(s) 9.66 10 1 0.873 0.998 12 0.296 1.21 1.67 19.53 45 0.08 0.60 1.7 0.00 0.1 0.2 0.21 2.8 0.7

G12(s) 10 8.16 6.61 0.581 0.973 5 0.819 1.50 1.67 -20.12 35 0.21 0.60 2.5 5.09 0.14 0.68 0.81 4.5 4.5

G13(s) 10 10 4.2 0.560 0.999 4 0.476 1.41 1.63 -10.13 38 0.14 0.61 1.9 4.77 0.11 0.37 0.45 2.8 1
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A.2.3 The GPC controller

No of h N1 N2 Nu λ T (z−1) IAEboth Mp Ms Am φm DM MM Disturbance Step response

system (sec) (abs) (abs) (dB) (deg) (sec) (abs) Trd yd IAEreg IAEservo Tr yp

Optimised IAEboth with constraint MM ≥ 0.6

G1(s) 0.1 1 39 5 0.078 (1 − 0.322z−1)(1 + 0.399z−1)(1 + 0.187z−1) 1.19 1.00 1.65 11.24 38 0.17 0.61 1.67 3.35 0.04 1.15 1.20 2.1

G2(s) 0.01 8 10 1 1 · 10−6 (1 − 0.708z−1)(1 + 0.727z−1)(1 + 0.824z−1) 0.207 1.00 1.67 -4.09 -36 0.00 0.60 0.0 5.2 ≃ 0 0.2 0.1 5.3

G3(s) 0.70 22 25 2 1 · 10−6 (1 − 0.911z−1)(1 + 0.040z−1)(1 + 0.054z−1) 37.1 1.00 1.67 7.95 64 23.09 0.60 61.0 0 21 15.9 0.7 6.1

G4(s) 0.01 1 158 16 0.078 (1 + 0.666z−1)(1 + 0.631z−1)(1 + 0.630z−1) 0.816 1.00 1.67 -6.48 -38 0.00 0.60 0.0 5.2 ≃ 0 0.8 0.7 3.6

G5(s) 0.15 4 40 3 0.078 (1 − 0.928z−1)(1 − 0.557z−1)(1 − 0.935z−1) 10.4 1.40 1.67 7.90 65 5.68 0.60 17.9 47 6.6 3.8 2.5 0.0

G6(s) 0.10 2 18 4 0.16 (1 + 0.399z−1)(1 − 0.095z−1)(1 + 0.741z−1) 0.775 1.00 1.67 -6.52 37 0.11 0.60 1.2 14 0.074 0.7 0.6 9.0

G7(s) 0.10 10 13 10 1 · 10−6 (1 + 0.410z−1)(1 − 0.802z−1)(1 + 0.397z−1) 2.45 1.00 1.68 7.97 64 1.46 0.60 3.8 0 1.4 1.1 0.0 39.0

G8(s) 0.02 60 143 1 0.2 (1 − 0.993z−1)(1 + 0.852z−1)(1 + 0.677z−1) 10.4 1.00 1.93 6.36 47 1.21 0.52 17.06 0 8.11 2.25 2.74 0.1

G9(s) 0.2 1 106 12 1 · 10−6 (1 − 0.420z−1)(1 − 0.396z−1)(1 − 0.231z−1) 0.536 1.00 1.67 8.32 45 0.17 0.60 0.40 0 0.01 0.52 0.18 0

G10(s) 0.01 1 59 9 0.078 (1 − 0.996z−1)(1 + 0.706z−1)(1 + 0.764z−1) 0.195 1.00 1.66 -5.33 -37 0.00 0.60 0.0 4.5 0.003 0.2 0.2 3.2

G11(s) 0.01 8 9 1 1 · 10−6 (1 − 0.657z−1)(1 + 0.191z−1)(1 + 0.841z−1) 0.165 1.00 1.67 -4.29 -37 0.00 0.60 0.0 7.6 ≃ 0 0.2 0.1 6.4

G12(s) 0.01 16 32 1 1 · 10−6 (1 − 0.318z−1)(1 − 0.959z−1)(1 − 0.887z−1) 0.531 1.00 1.60 10.08 50 0.01 0.63 0.0 5.4 ≃ 0 0.5 0.4 5.6

G13(s) 0.02 1 55 11 0.079 (1 + 0.631z−1)(1 + 0.592z−1)(1 + 0.475z−1) 0.382 1.00 1.63 8.01 61 0.08 0.62 0.0 3.40 ≃ 0 0.38 0.43 1.5
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Appendix B, tuning of the flexible link

The following nomenclature is assumed here:

• IAEym is IAE of control error for the nominal model

• IAEyp is IAE of control error for the plant

• IAEum is IAE of control signal for the nominal model

• IAEup is IAE of control signal for the plant

B.1 Tuning based on GPM specification

Results of tuning controllers based on Am = 6dB and φm = 45◦, for details see equa-

tion 5.7.

The ideal PID controller

Kp = 1.872 Ki = 3.611 Kd = 0.044

Am = 6.02dB φm = 45◦ MM = 0.48 DM = 0.15(sec)

IAEym = 1.45 IAEyp = 1.65 IAEum = 2.61 IAEup = 5.05

(B.1)

The 2–DOF PID controller

Kp = 0.064 Ki = 2.480 Kd = 127 b = 0.200 c = 0.667 N = 26

Am = 6.02dB φm = 45◦ MM = 0.49 DM = 0.16(sec) Mu = 15.81dB

IAEym = 1.13 IAEyp = 1.47 IAEum = 1.59 IAEup = 3.91

(B.2)
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The GPC controller

N1 = 1 N2 = 123 Nu = 4 λ = 0.77 h = 0.01

T (z−1) = (1 − 0.9756z−1)(1 − 0.1254z−1)(1 − 0.1088z−1)

Am = 6.02dB φm = 44◦ MM = 0.48 DM = 0.10(sec) Mu = 51.38dB

IAEym = 0.77 IAEyp = ∞ IAEum = 1.50 IAEup = ∞

(B.3)

B.2 Tuning based on GPM specification

Results of tuning controllers based on Am = 14dB and φm = 45◦, for details see equa-

tion 5.8.

The ideal PID controller

Kp = 0.749 Ki = 1.155 Kd = 0.018

Am = 13.99dB φm = 44◦ MM = 0.75 DM = 0.34(sec)

IAEym = 2.98 IAEyp = 4.81 IAEum = 2.77 IAEup = 3.38

(B.4)

The 2–DOF PID controller

Kp = 0.171 Ki = 0.932 Kd = 127 b = 0.067 c = 1.000 N = 3

Am = 14.02dB φm = 45◦ MM = 0.74 DM = 0.37(sec) Mu = 18.23dB

IAEym = 2.98 IAEyp = 3.37 IAEum = 2.28 IAEup = 4.44

(B.5)

The GPC controller

N1 = 4 N2 = 93 Nu = 3 λ = 9.8 h = 0.01

T (z−1) = (1 − 0.9854z−1)(1 + 0.3499z−1)(1 − 0.1625z−1)

Am = 13.94dB φm = 59◦ MM = 0.74 DM = 0.33(sec) Mu = 47.91dB

IAEym = 1.99 IAEyp = ∞ IAEum = 1.46 IAEup = ∞

(B.6)

B.3 Tuning based on Modulus Margin specification

Results of tuning controllers based on MM = 0.6, for details see equation 5.9.
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The ideal PID controller

Kp = 1.457 Ki = 2.930 Kd = 0.035

Am = 8.01dB φm = 44◦ MM = 0.60 DM = 0.19(sec)

IAEym = 1.71 IAEyp = 1.93 IAEum = 2.79 IAEup = 4.48

(B.7)

The 2–DOF PID controller

Kp = 0.441 Ki = 2.516 Kd = 127 b = 0.067 c = 0.867 N = 2

Am = 8.14dB φm = 41◦ MM = 0.59 DM = 0.18(sec) Mu = 32.86dB

IAEym = 1.59 IAEyp = 1.88 IAEum = 1.98 IAEup = 4.61

(B.8)

The GPC controller

N1 = 1 N2 = 31 Nu = 1 λ = 2 h = 0.01

T (z−1) = (1 − 0.9678z−1)(1 − 0.2933z−1)(1 − 0.1352z−1)

Am = 8.03dB φm = 46◦ MM = 0.58 DM = 0.13(sec) Mu = 49.24dB

IAEym = 0.98 IAEyp = ∞ IAEum = 1.46 IAEup = ∞

(B.9)

B.4 Tuning based on input sensitivity function

Results of tuning controllers based on Mu = 6dB, for details see equation 5.10.

The ideal PID controller

Kp = 0.176 Ki = 2.128 Kd = 1.114 N = 1

Am = 9.41dB φm = 51◦ MM = 0.65 DM = 0.29(sec) Mu = 6.23dB

IAEym = 2.43 IAEyp = 2.90 IAEum = 2.45 IAEup = 4.55

(B.10)

The 2–DOF PID controller

Kp = 0.300 Ki = 4.957 Kd = 255 b = 0.056 c = 0.020 N = 6

Am = 3.94dB φm = 31◦ MM = 0.35 DM = 0.08(sec) Mu = 7.03dB

IAEym = 1.14 IAEyp = 1.49 IAEum = 1.56 IAEup = 4.44

(B.11)
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The GPC controller

N1 = 4 N2 = 101 Nu = 8 λ = 0.091 h = 0.01

T (z−1) = (1 − 0.9688z−1)(1 − 0.9551z−1)(1 − 0.8410z−1)

Am = 8.26dB φm = 42◦ MM = 0.55 DM = 0.17(sec) Mu = 8.39dB

IAEym = 0.93 IAEyp = 1.46 IAEum = 1.46 IAEup = 4.44

(B.12)

133



Appendix C, figures discussed in section 2.6
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Figure C.1 Study of the search area for the system G1
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Figure C.2 Study of the search area for the system G5
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Figure C.3 Study of the search area for the system G5
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Figure C.5 Study of the search area for the system G10
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Figure C.6 Study of the search area for the system G10

140


	Introduction
	Review of existing controller comparisons
	Problem statement
	Organisation of the thesis

	Controllers
	PID controller
	Two degree of freedom PID controller
	Model--Based Predictive Controller
	Control law of the GPC
	GPC tuning parameters
	The sampling period, h
	The minimum output horizon, N1 
	The maximum output horizon, N2
	The control horizon, Nu
	The control weighting coefficient, lambda
	Effect of the T polynomial 

	Gradient techniques versus stochastic methods 

	Objective functions 
	Genetic Algorithms 
	Generate initial population
	Ranking
	Selection
	Crossover
	Mutation
	Evaluation of the fitness function
	Terminating the GA 
	Cancellation of the output horizon

	Time domain performance criteria
	Metrics to measure robustness 
	Gain and phase margin specification 
	Modulus margin, MM 
	Resonance peak of the closed--loop system Mp 
	Delay margin, DM

	An overview of robust tuning techniques 
	Gain and phase margin specifications 
	Techniques based on sensitivity functions 
	Resume of tuning techniques

	Objective functions 
	Gain and phase margin specifications 
	Modulus margin
	Input sensitivity function


	Simulations 
	Models 
	Choosing the sampling period
	Optimisation environment
	Results
	The objective function based on GPM method
	The objective function with constraints on MM 
	Summary of the results


	Real-time application 
	Flexible link
	Identification of the flexible link
	Tuning strategy
	Results 
	Discussion


	Conclusions and future research
	Conclusions
	Summary of contributions
	Future research directions

	Bibliography
	Appendix A
	Objective function incorporating GPM
	The ideal PID controller 
	The 2--DOF PID controller 
	The GPC controller 

	Objective function incorporating the sensitivity functions 
	The ideal PID controller 
	The 2--DOF PID controller 
	The GPC controller 


	Appendix B, tuning of the flexible link
	Tuning based on GPM specification 
	Tuning based on GPM specification 
	Tuning based on Modulus Margin specification 
	Tuning based on input sensitivity function 

	Appendix C, figures discussed in section 2.6

