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Abstract. This paper proposes three new robust controller design strategies for a 2-DOF 
PID controller. In each design, performance is optimised subject to constraints on robust-
ness where in the first design this is achieved by specifying a desired minimum value for 
the gain and phase margins. In the second design the constraint is placed on the modulus 
margin and in the third case a desired upper bound on the maximum value of the input sen-
sitivity function is considered. Each of these optimisation problems are solved using a ca-
nonical genetic algorithm. These three designs are comprehensively compared in simula-
tion using a set of benchmark processes. The most consuming part of the GA optimsation is 
the evaluation of the fitness function, hence a novel solution is proposed that reduce the 
execution time by up to 60%.  

Key Words. Genetic Algorithms, two degree of freedom PID controller, sensitivity func-
tions, gain and phase margin. 

 
 
1. INTRODUCTION 

Since the early 1990’s, Genetic Algorithms (GAs) 
have been used to determine PID controller parame-
ters. Initially, simple cost functions, e.g. integral of 
squared error, were specified [10, 16, 17, 18]. More 
recently the versatility of the GA approach has been 
exploited and more complex cost functions incorpo-
rating robustness considerations have been proposed. 
In general, the robustness issue has been addressed 
through the use of (i) gain and phase margin criteria 
and (ii) a specification on a closed-loop sensitivity 
function. 

Relatively few GA–based designs for PID controllers 
using gain and phase margins exist, and those that 
have been proposed, e.g. in [11] use simple PID con-
troller structures and relatively simple cost functions. 
In this paper, a more useful PID algorithm, based on 
a two degree-of-freedom (2-DOF) structure is studied 
and the cost function incorporates metrics that meas-
ure servo performance, regulator performance as well 
as constraints on both the gain and phase margin. As 
such, this design is considered to be realistic and ap-
plicable to the general automation industry. In con-
trast to the use of gain and phase margin criteria 
a number of useful GA-based approaches using sen-

sitivity functions have been proposed, e.g. [4, 6, 7, 9, 
12, 15, 19, 21, 22], amongst others. Many of these 
approaches are broadly similar and involve solving 
a mixed H2/H∞ problem where performance is speci-
fied as a 2-norm and robustness by an ∞-norm on 
some suitably chosen sensitivity function. In this 
paper an additional two cost functions will be con-
sidered. Like the gain and phase margin design these 
will both include metrics to assess the servo and 
regulator performance and robustness will be 
achieved by constraints on (i) the modulus margin, 
MM, as defined in [13] and (ii) the input sensitivity 
function. While MM being the inverse of the peak 
value of the sensitivity function, is a common and 
widely applied approach to controller design the ap-
plication of the input sensitivity function is atypical 
but, in the authors’ opinion, very practical. 

The contribution of this paper is then to (i) present 
a number of novel controller design approaches and 
(ii) to compare the performance of these designs and 
determine whether any of these objective functions 
offer any real benefit to the automation industry by 
optimizing process units to, for example, maximize 
throughput, minimize waste, etc. The performance of 
these objective functions will be evaluated in simula-
tion over a range of classical and a-typical transfer 
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functions [1, 2] that are representative of the process 
industry. From this simulation study general conclu-
sions will be drawn. 

2. CONTROLLER DESCRIPTION 

The ideal PID controller is given by equation (1) 

 ( ) ( ) ( )U s E s C s=  (1) 

where U(s) is the control signal, the E(s) is the con-
trol error and C(s) is defined by 

 ( ) i
p d
K

C s K K s
s

= + +  (2) 

Kp, Ki and Kd are the controller parameters. Equation 
(2) is known as a single degree of freedom control 
law because the controller parameters may be opti-
mised for servo performance or regulator perform-
ance but not both. Most industrial controllers are 
considerably more complex than the "textbook" con-
trol law of equation (2); a typical representation is 
given by equation (3). 
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  (3) 
In equation (3), R(s) is the set-point, Y(s) is the proc-
ess output, N is the derivative filter, b and c are 
weightings that influence the set-point response. This 
equation may be restructured as 

 ( ) ( ) ( ) ( ) ( )U s R s F s Y s H s= −  (4) 

where ( )F s  and ( )H s  are defined by equations (5) 
and (6) respectively. This representation is illustrated 
in figure 1, where ( )G s  is the transfer function repre-
senting the plant. 
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Clearly, the industrial PID structure corresponds to 
a 2-DOF control law, where the transfer function 

( )H s  may be chosen to yield optimal regulator per-

formance while the transfer function ( )F s  can be 
chosen to yield good servo performance. Note that 
Kp, Ki, Kd and N appear in both of these transfer func-
tions. Thus, the 2-DOF PID controller is not a true 2-
DOF controller. However, the parameters b and c 
may be utilised to enhance the servo performance 
and clearly do not affect the regulator performance. 
For the ideal PID controller ( )F s  and ( )H s  are 
equal, given by equation (1). 

3. CONTROLLER DESIGN 

The controller design problem consists of choosing 
suitable values for the controller coefficients Kp, Ki, 
Kd, N, b and c. In this paper an optimization approach 
is adopted where these coefficients are determined by 
minimising the integral of the absolute value of the 
combined servo plus regulator error subject to ro-
bustness constraints. Three different types of robust-
ness constraints are considered. In the first design the 
standard gain margin, Am, and phase margin, φm are 
employed and the following constraints specified 

2mA > ; 45mφ > ° . The second design considers 
placing a constraint on the modulus margin. The 
Modulus Margin, MM, is defined in [13] as the radius 
of the circle centred on the critical point (−1, i0) and 
tangent to the Nyquist plot of the open-loop transfer 
function, ( )L s . The inverse of the MM corresponds 
to the peak amplitude value of the sensitivity func-
tion ( )  1/(1 ( ))S j L jω ω= +  which is commonly 
used in, for example, H∞ control. Recommended 
practical value for the modulus margin is 

0.5 (-6 )MM dB≥  and this constraint was adopted 
in the second design. In the final design an alterna-
tive sensitivity function, called the input sensitivity 
function, denoted by ( )sU , and defined by  

( ) ( ) ( )
( )

( ) 1 ( ) ( ) 1 ( )
U s H s H s

s
D s G s H s L s

= = =
+ +

U  (7) 

using the notation of figure 1. As the name suggests, 
this function defines the sensitivity of the input sig-
nal, ( )U s , to deterministic disturbances, ( )D s . The 
function may also be used to directly penalise the 
high-frequency gain of the feedback controller ( )H s  
and thus reduce the impact of high-frequency meas-
urement noise on the closed-loop system. Since 
model-uncertainty tends to be predominantly high-
frequency in nature, a suitably shaped ω( )jU  will 
also enhance the robustness of the closed-loop sys-
tem. In common with the sensitivity function, 

( )S jω , the philosophy adopted with ω( )jU  was to 
constrain the peak value of this function. However, 
unlike ( )S jω , recommendations for a suitable peak 
value do not exist. The problem was circumvented by 
examining the results obtained from the other two 
designs and using this knowledge to chose a suitable 
upper bound. In all three cases the objective function 
was minimised using a Genetic Algorithm (GA). 

Fig. 1 Block diagram of 2-DOF PID controller 
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3.1 Genetic Algorithm 

The GA approach is an intuitive and mature search 
and optimisation technique based on the principles of 
natural evolution and population genetics. Typically 
the GA starts with little or no knowledge of the cor-
rect solution and depends entirely on responses from 
an interacting environment and its evolution opera-
tors to arrive at good solutions. By dealing with sev-
eral independent points, the GA samples the search 
space in parallel and hence is less susceptible to con-
verging to a suboptimal solution. In this way the GA 
has been shown to be capable of locating high per-
formance areas in complex domains without experi-
encing the difficulties associated with false optima, 
as may occur with gradient descent techniques. Thus 
the GA has been recognised as a powerful tool in 
many control applications. 

The structure of the GA was broadly similar to that 
described in [5] and is popularly known as the simple 
or canonical GA. The controller parameters were 
encoded using Gray coding and an initial, randomly 
generated population of 100 individuals was used. At 
each iteration parents were probabilistically selected 
using stochastic universal sampling, while offsprings 
were generated using single point crossover (prob-
ability = 1) and a single bit mutation (probability = 
0.0143). The algorithm terminated after 100 genera-
tions. Six parameters Kp, Ki, Kd, b, c were tuned. 
Each of the gains was initially optimised over the 
range 0–20 and represented as 10 bit segments with a 
resolution of 0.01. This upper bound was carefully 
monitored and if the GA returned parameters close to 
the bound it was then increased. However, in accor-
dance with the PID controller structure, the parame-
ters b and c have a fixed range (0–1) and the remain-
ing parameter N was tuned over the range 0–31 and 
represented with 5 bits. 

3.2 Objective functions  
The critical component of any optimisation is the 
design of the objective function to be minimised. As 
mentioned previously, the objective function em-
ployed here incorporates robustness via constrains on 
1) the gain and phase margins, 2) the modulus mar-
gin, and 3) the input sensitivity function. These con-
straints were implemented as follows. First consider 
the standard Gaussian function 

 xy e=  (8) 
If this function is modified by appropriate scaling 
(trial and error) it is possible to generate curves such 
as illustrated in figure 2. If the gain margin is less 
than 6(dB) then the contribution by this function to 
the overall cost is large, hence the cost function will 
be heavily weighted, regardless of the IAE; while if 
the gain margin is greater than 6(dB) the contribution 
is constant at unity. A similar idea was applied to the 
phase margin, the modulus margin and the maximum 
peak on the input sensitivity function. Mathemati-
cally these curves are represented by equations (9)-
(12) 
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  (12) 
where Am is the measured gain margin, mA  is the 
specified minimum value, both expressed as absolute 
values, mφ  is the measured phase margin (in de-
grees) and mφ  is the specified minimum value. MM 
represents measured modulus margin and MM  
a user specified minimum value, while the maximum 
peak on the input sensitivity function is denoted by 
Mu and the specific maximum value is uM . 

The IAE of the servo and regulatory response is cal-
culated using equation (13) 

 
1 2

10

( ) ( )
t t

k k t

IAE e k e k
= =

= +∑ ∑  (13) 

where e(k) is the control error and t1 is time at which 
the disturbance, D(s), is applied. Therefore the IAE 
servo is calculated over the period 10 t t< < , and 
the regulator is calculated over the period 
1 2t t t≤ ≤ . The various objective functions are then 

 { }
, , , , ,
min

p i d
Am Am m

K K K b c N
J IAE φλ λ= ⋅ ⋅  (14) 

 { }
, , , , ,
min

p i d
MM MM

K K K b c N
J IAE λ= ⋅  (15) 

 { }
, , , , ,
minMu Mu

Kp Ki Kd b c N
J IAE λ= ⋅  (16) 

Clearly, if the robustness criteria are satisfied 
1Amλ = , 1mφλ = , 1MMλ =  and 1Muλ =  equa-

tions (14)-(16) reduce to minimising the IAE. The 
criteria may then be interpreted as optimising per-
formance subject to constraints on robustness. 

 

Fig. 2 Constraining factor 
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3.3 GA with a look up table 
The GA of section 3.1 was implemented in the 
MATLAB environment and the objective functions 
of section 3.2 were evaluated using MATLAB and 
Simulink. MATLAB was used to calculate the gain 
and phase margins, MM and Mu. If the process trans-
fer function contained a time-delay the time-delay 
was replaced with a Padé approximation and this 
approximation was used in the calculation of MM 
and Mu. For accuracy reasons it was decided that 
Simulink would be used to generate the closed-loop 
signals y(t), e(t) as this avoided the problem of ap-
proximating time-delay. The cost, however, was in-
creased computational time which varied signifi-
cantly depending on the nature of the process under 
consideration. 

A solution to speed the GA up is to implement a look 
up table. The most time consuming part is the evalua-
tion of the fitness function, so a faster GA implies 
that the objective function must be executed quicker. 
As was mentioned before GAs are stochastic search 
techniques and a fitness function with the same con-
troller parameters may be evaluated a number times 
in each population. The number of unnecessary com-
putations increase with each generation as the algo-
rithm converges. To avoid this, a matrix (look up 
table) is generated, where previously computed GA 
chromosomes are stored with the equivalent value of 
the objective function. The algorithm checks whether 
the fitness function was previously evaluated and, if 
so, the objective function is not executed; instead the 
solution is passed through. A disadvantage of this 
method is that the matrix grows with each member of 
the population that is evaluated. However, this is not 
a serious restriction as the MATLAB find function is 
relatively fast and this solution provides a faster off-
line optimisation. 

Consider controller parameter tuning problem of 
transfer function with time-delay, G2(s), for the sec-
ond deisgn using the AMD Athlon 650Mhz proces-
sor. Without the look up table the typical optimisa-
tion takes 30 minutes and the population of 50 indi-
viduals requires, on average, 23.6(sec) to be evalu-
ated. The time may vary depending on the value of 
Kd. If the look up table is implemented, individuals 
require approximately 13.5(sec) to be evaluated and 
the optimisation is performed in 20 minutes. This 
performance improvement is illustrated in figure 3, 
where the x-axis represents the number of genera-
tions and the y-axis shows the time which is required 
to evaluate a single generation. The dashed plot pre-
sents the GA solution without the look up table, 
while the solid line corresponds to the case where the 
look up table is used. Note that the initial population 
has been evaluated and this data has already been 
stored in the matrix. In this case 10% of the popula-
tion is passed to another generation unchanged and 
accounts for the initial difference between algo-
rithms. In this example, the use of the look-up table 
results in an average 60% reduction in the evaluation 

time even though the dimension of the final matrix 
was 2342 rows and 7 columns (6 tuning parameters 
and the objective function evaluation). The combina-
tion of the GA with a look up table significantly re-
duces the computation time required to tune the more 
complicated controllers such as the two degree of 
freedom PID controller.  

4. SIMULATION RESULTS 

The 2-DOF PID was evaluated by implementing the 
controller design equations, (14)-(16) to the list of 
process models (17)-(27). These benchmark systems 
were proposed by Åström and Hägglund [1, 2] and 
are representative of typical industrial process trans-
fer functions. 
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Fig. 3 Time taken to evaluate the GA population; solid line using 
a look-up table, dashed line excluding the look-up table  
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The control signal was constrained to the range 
10 ( ) 10u k− ≤ ≤ . Robustness was achieved by 

considering requirements for the gain and phase mar-
gin. In the literature recommendations for an ade-
quate gain margin vary from Am = 4.6 – 14dB's [8, 
20, 23 and 3 on p. 126] while suggested practical 
values for the phase margin are 30 60mϕ = ° − ° . In 
[3, 13] it is suggested that the modulus margin lie 
between 0.5 (aggressive tuning) and 0.77 (robust 
tuning). In contrast, the author's are not aware of any 
specific recommendations for the input sensitivity 
function, other than the general requirement that the 
peak value be some suitably small number. Based on 
values returned from the three previous designs the 
smallest Mu was taken into consideration, hence the 
value varied depending on the model 

The simulation results are presented in table 1. 
Clearly, the design was successful in that the speci-
fied minimum gain and phase margins 6mA dB=  
and 45mϕ = °  were achieved for most models, the 
exceptions being G8(s) (Am = 3.7dB) and G4(s) 
( 30mϕ = ° ). The second design ( 14mA dB=  and 

45mϕ = ° ) was not successful for G2(s), G7(s) and 
G8(s). However, the design specifications could be 
achieved if the penality function weighting was in-
creased, i.e. λAm of equation (14) was multiplied by 
10. The third design ( 0.6MM = ) was achieved for 
all models and the fourth design ( varuM = ) as 
well. 

A selection of closed-loop responses are illustrated in 
figures 4 and 5 where the solid line represents the 
response of the first design, the dotted line of the 
second, the dashed line of the third and the fourth 
design is shown by dashdot line. In each of these 
figures the upper plot illustrates the closed-loop re-
sponse to a unit step input occurring at t=0 and to 
a unit step disturbance. In figure 4 the disturbance 
was applied at t=10(sec) while in figure 5 the distur-
bance occurs at time t=15(sec). Also shown are the 
corresponding control signals. 

Consider the first model, G1(s), Mu varies from 30 for 
the first design to 37 for the third one and the most 
sluggish response is for the fourth design (Mu=18). 
This design gives a reasonably fast response and the 
amount of energy required is smaller than for other 
designs. The closed-loop system with model G9(s) 
gives the fastest response using this design. The pro-
posed method is very effective. However, a difficulty 
remains with selecting a desired maximum value of 
Mu. 

In general, the gain margin is expressed as a positive 
number (in dB), nevertheless, there are two excep-
tions. Model G11(s), tuned using the sensitivity func-
tion approach, returned a gain reduction margin or 
downward margin, [14]. Therefore, it is possible that 
the gain margin, expressed in dB, could be negative 
and the closed-loop system remains stable. 

 1) 6 45
mmA dB ϕ= = °  2) 14 45

mmA dB ϕ= = ° 3) 6MM = 4) varuM =
 IAE Am φm MM Mu IAE Am φm MM Mu IAE Am φm MM Mu IAE Am φm MM Mu

G1(s) 1.633 14.66 45 0.56 30 1.647 14.59 45 0.56 32 1.707 20.61 45 0.60 37 2.351 11.63 42 0.52 18
G2(s) 40.25 5.72 62 0.50 45 51.43 9.84 63 0.69 34 41.38 7.15 62 0.59 41 39.53 1.03 65 0.13 34
G3(s) 0.2688 15.59 45 0.61 49 0.2608 17.03 45 0.63 51 0.3369 12.90 50 0.60 28 0.6563 9.29 23 0.35 26
G4(s) 3.156 14.67 30 0.44 39 4.887 14.77 45 0.55 29 3.997 22.24 41 0.59 32 3.406 5.18 16 0.25 25
G5(s) 9.713 5.88 55 0.48 22 13.09 14.03 57 0.62 13 10.79 8.15 58 0.60 23 10.12 2.73 45 0.27 16
G6(s) 1.147 13.32 45 0.46 28 1.15 14.21 45 0.47 30 1.376 17.03 66 0.60 26 1.49 6.48 42 0.38 17
G7(s) 3.298 8.31 58 0.66 9.1 3.116 8.02 59 0.67 10 2.837 5.55 60 0.61 20 3.017 6.21 57 0.64 9 
G8(s) 4.717 3.70 39 0.48 47 8.899 5.14 60 0.51 38 5.144 5.51 33 0.60 58 4.043 2.08 27 0.36 37
G9(s) 0.2584 ∞ 74 0.99 30 0.2563 ∞ 107 1.00 39 0.1225 ∞ 96 1.00 38 0.1039 ∞ 42 0.66 18
G10(s) 0.3285 25.54 45 0.61 51 0.2967 14.33 45 0.57 34 0.2941 19.53 45 0.60 42 0.4707 7.30 26 0.36 24
G11(s) 0.6125 ∞ 67 0.94 64 0.5877 ∞ 48 0.81 48 0.8188 -20.13 35 0.60 36 0.9228 -13.66 65 0.92 55

Fig. 5 Set–point following for G4(s) Fig. 4 Set–point following for G1(s) 
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Tab. 1 The optimised IAE with robustness constraints 
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5. CONCLUSIONS 

From figures 4, 5 and the results listed in table 1 it is 
evident that designs proposed in this paper are very 
effective. Despite the wide range of process dynam-
ics: stable, inverse unstable, integrating, long time-
delay, stable and consistent closed-loop performance 
was obtained for all of the systems examined and 
systems remained stable. If the integral of absolute 
error criteria are compared, it may be conclude that 
none of the proposed methods is significantly better. 
However, even though the responses from the third 
design are not as fast as from the first design, it can 
be summarised that this design gives slightly better 
results than the other counterparts. 

This work, while providing some insight into the 
relative merits of the controllers is limited by the fact 
that perfect modelling was assumed. It is anticipated 
that if model uncertainty was incorporated and robust 
performance considered the results might vary. 
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